In conventional networks, there was a tight bond between the control plane and the data plane. The introduction of Software-Defined Networking (SDN) separated these planes, and provided additional features and tools to solve some of the problems of traditional network (i.e., latency, consistency, efficiency). SDN is a flexible networking paradigm that boosts network control, programmability and automation. It proffers many benefits in many areas, including routing. More specifically, for efficiently organizing, managing and optimizing routing in networks, some intelligence is required, and SDN offers the possibility to easily integrate it. To this purpose, many researchers implemented different machine learning (ML) techniques to enhance SDN routing applications. This article surveys the use of ML techniques for routing optimization in SDN based on three core categories (i.e. supervised learning, unsupervised learning, and reinforcement learning). The main contributions of this survey are threefold. Firstly, it presents detailed summary tables related to these studies and their comparison is also discussed, including a summary of the best works according to our analysis. Secondly, it summarizes the main findings, best works and missing aspects, and it includes a quick guideline to choose the best ML technique in this field (based on available resources and objectives). Finally, it provides specific future research directions divided into six sections to conclude the survey. Our conclusion is that there is a huge trend to use intelligence-based routing in programmable networks, particularly during the last three years, but a lot of effort is still required to achieve comprehensive comparisons and synergies of approaches, meaningful evaluations based on open datasets and topologies, and detailed practical implementations (following recent standards) that could be adopted by industry. In summary, future efforts should be focused on reproducible research rather than on new isolated ideas. Otherwise, most of these applications will be barely implemented in practice.
The rapid advancement of wireless communication is forming a hyper-connected 5G network in which billions of linked devices generate massive amounts of data. The traffic control and data forwarding functions are decoupled in software-defined networking (SDN) and allow the network to be programmable. Each switch in SDN keeps track of forwarding information in a flow table. The SDN switches must search the flow table for the flow rules that match the packets to handle the incoming packets. Due to the obvious vast quantity of data in data centres, the capacity of the flow table restricts the data plane's forwarding capabilities. So, the SDN must handle traffic from across the whole network. The flow table depends on Ternary Content Addressable Memorable Memory (TCAM) for storing and a quick search of regulations; it is restricted in capacity owing to its elevated cost and energy consumption. Whenever the flow table is abused and overflowing, the usual regulations cannot be executed quickly. In this case, we consider lowrate flow table overflowing that causes collision flow rules to be installed and consumes excessive existing flow table capacity by delivering packets that don't fit the flow table at a low rate. This study introduces machine learning techniques for detecting and categorizing low-rate collision flows table in SDN, using Feed Forward Neural Network (FFNN), K-Means, and Decision Tree (DT). We generate two network topologies, Fat Tree and Simple Tree Topologies, with the Mininet simulator and coupled to the OpenDayLight (ODL) controller. The efficiency and efficacy of the suggested algorithms are assessed using several assessment indicators such as success rate query, propagation delay, overall dropped packets, energy consumption, bandwidth usage, latency rate, and throughput. The findings showed that the suggested technique to tackle the flow table congestion problem minimizes the number of flows while retaining the statistical consistency of the 5G network. By putting the proposed flow method and checking whether a packet may move 1414
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.