Humans have witnessed three deadly pandemics so far in the twenty-first century which are associated with novel coronaviruses: SARS, Middle East respiratory syndrome (MERS), and COVID-19. All of these viruses, which are responsible for causing acute respiratory tract infections (ARTIs), are highly contagious in nature and/or have caused high mortalities. The recently emerged COVID-19 disease is a highly transmittable viral infection caused by another zoonotic novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Similar to the other two coronaviruses such as SARS-CoV-1 and MERS-CoV, SARS-CoV-2 is also likely to have originated from bats, which have been serving as established reservoirs for various pathogenic coronaviruses. Although, it is still unknown how SARS-CoV-2 is transmitted from bats to humans, the rapid human-to-human transmission has been confirmed widely. The disease first appeared in Wuhan, China, in December 2019 and quickly spread across the globe, infected 48,539,872 people, and caused 1,232,791 deaths in 215 countries, and the infection is still spreading at the time of manuscript preparation. So far, there is no definite line of treatment which has been approved or vaccine which is available. However, different types of potential vaccines and therapeutics have been evaluated and/or are under clinical trials against COVID-19. In this review, we summarize different types of acute respiratory diseases and briefly discuss earlier outbreaks of coronaviruses and compare their occurrence and pathogenicity with the current COVID-19 pandemic. Various epidemiological aspects of COVID-19 such as mode of spread, death rate, doubling time, etc., have been discussed in detail. Apart from this, different technical issues related to the COVID-19 pandemic including use of masks and other socio-economic problems associated with the pandemic have also been summarized. Additionally, we have reviewed various aspects of patient management strategies including mechanism of action, available diagnostic tools, etc., and also discussed different strategies for the development of effective vaccines and therapeutic combinations to deal with this viral outbreak. Overall, by the inclusion of various references, this review covers, in detail, the most important aspects of the COVID-19 pandemic.
Recent advances in nanoscience and nanotechnology have also led to the development of novel nanomaterials, which ultimately increase potential health and environmental hazards. Interest in developing environmentally benign procedures for the synthesis of metallic nanoparticles has been increased. The purpose is to minimize the negative impacts of synthetic procedures, their accompanying chemicals and derivative compounds. The exploitation of different biomaterials for the synthesis of nanoparticles is considered a valuable approach in green nanotechnology. Biological resources such as bacteria, algae fungi and plants have been used for the production of low-cost, energy-efficient, and nontoxic environmental friendly metallic nanoparticles. This review provides an overview of various reports of green synthesised zero valent metallic iron (ZVMI) and iron oxide (Fe2O3/Fe3O4) nanoparticles (NPs) and highlights their substantial applications in environmental pollution control. This review also summarizes the ecotoxicological impacts of green synthesised iron nanoparticles opposed to non-green synthesised iron nanoparticles.
Research on green production methods for metal oxide nanoparticles (NPs) is growing, with the objective to overcome the potential hazards of these chemicals for a safer environment. In this study, facile, ecofriendly synthesis of copper oxide (CuO) nanoparticles was successfully achieved using aqueous extract of Pterospermum acerifolium leaves. P. acerifolium-fabricated CuO nanoparticles were further characterized by UV-Visible spectroscopy, field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and dynamic light scattering (DLS). Plant-mediated CuO nanoparticles were found to be oval shaped and well dispersed in suspension. XPS confirmed the elemental composition of P. acerifolium-mediated copper nanoparticles as comprised purely of copper and oxygen. DLS measurements and ion release profile showed that P. acerifolium-mediated copper nanoparticles were more stable than the engineered CuO NPs. Copper oxide nanoparticles are used in many applications; therefore, their potential toxicity cannot be ignored. A comparative study was performed to investigate the bio-toxic impacts of plant-synthesized and engineered CuO nanoparticles on water flea Daphnia. Experiments were conducted to investigate the 48-h acute toxicity of engineered CuO NPs and plant-synthesized nanoparticles. Lower EC50 value 0.102 ± 0.019 mg/L was observed for engineered CuO NPs, while 0.69 ± 0.226 mg/L was observed for plant-synthesized CuO NPs. Additionally, ion release from CuO nanoparticles and 48-h accumulation of these nano CuOs in daphnids were also calculated. Our findings thus suggest that the contribution of released ions from nanoparticles and particles/ions accumulation in Daphnia needs to be interpreted with care.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.