Frontiers in Earth Science | www.frontiersin.org October 2019 | Volume 7 | Article 275 Textor et al. DOC Turnover in Alaskan Watersheds modern, stable DOC sources. Thus, future projections of carbon turnover in northern high-latitude region streams may not have to account for a priming effect. KEY POINTS -Biodegradability of DOC followed a continuum from relatively stable stream DOC to relatively biolabile DOC from permafrost, active layer organic soil, and vegetation leachates. -DOM composition, especially the relative contribution of aliphatic compounds, largely controlled biodegradability and we observed evidence for selective utilization/preservation of certain compounds with depth in soil horizons. -Nutrient availability played a role in DOC biodegradability, while priming did not appear to be a relevant mechanism for enhancing DOC biodegradation.
Permafrost degradation is delivering bioavailable dissolved organic matter (DOM) and inorganic nutrients to surface water networks. While these permafrost subsidies represent a small portion of total fluvial DOM and nutrient fluxes, they could influence food webs and net ecosystem carbon balance via priming or nutrient effects that destabilize background DOM. We investigated how addition of biolabile carbon (acetate) and inorganic nutrients (nitrogen and phosphorus) affected DOM decomposition with 28‐day incubations. We incubated late‐summer stream water from 23 locations nested in seven northern or high‐altitude regions in Asia, Europe, and North America. DOM loss ranged from 3% to 52%, showing a variety of longitudinal patterns within stream networks. DOM optical properties varied widely, but DOM showed compositional similarity based on Fourier transform ion cyclotron resonance mass spectrometry (FT‐ICR MS) analysis. Addition of acetate and nutrients decreased bulk DOM mineralization (i.e., negative priming), with more negative effects on biodegradable DOM but neutral or positive effects on stable DOM. Unexpectedly, acetate and nutrients triggered breakdown of colored DOM (CDOM), with median decreases of 1.6% in the control and 22% in the amended treatment. Additionally, the uptake of added acetate was strongly limited by nutrient availability across sites. These findings suggest that biolabile DOM and nutrients released from degrading permafrost may decrease background DOM mineralization but alter stoichiometry and light conditions in receiving waterbodies. We conclude that priming and nutrient effects are coupled in northern aquatic ecosystems and that quantifying two‐way interactions between DOM properties and environmental conditions could resolve conflicting observations about the drivers of DOM in permafrost zone waterways.
Rivers deliver approximately 260 Tg of dissolved organic carbon (DOC) to the ocean annually, yet there is little evidence of terrigenous DOC (tDOC) in the ocean. While tDOC was historically believed to be stable and resistant to microbial degradation, it has recently been shown that freshwater systems mineralize more tDOC than originally thought. The priming effect is a possible mechanism by which inputs of biolabile DOC enhance the bioavailability of stable DOC components in aquatic systems, resulting in higher rates of microbial remineralization. Here we investigate tDOC biodegradability by conducting bioincubation experiments and utilizing ultrahigh resolution mass spectrometry to characterize the chemical composition of blackwater and leachate dissolved organic matter (DOM) samples. The role of priming in blackwater ecosystems was assessed through the inclusion of bioincubation treatments amended with a variety of simple biolabile OC substrates. Blackwaters lost 6.10 ± 3.85% DOC within 1 month, while leachates lost 38.10 ± 16.74% DOC. There were no significant differences between DOC remineralization in control and primed treatments, indicating that priming is not an important factor in the biodegradation of DOC in blackwater ecosystems. However, the proportion of biodegradable DOC and DOM composition were significantly correlated, mostly driven by the contribution of aliphatic compounds (H/C ≥ 1.5, O/C < 0.9) that were abundant (9.3 ± 5.2%) in leachate DOM. The molecular signature of biodegraded leachate DOM resembled that of stable blackwater DOM, indicating that bioavailable DOM components leached from plant litter are rapidly utilized and stable DOM is exported downstream.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.