Some novel 1,3,4-thiadiazole [5][6][7][8] and 1,2,4-triazole [9][10][11][12] derivatives carrying amino acid moiety were synthesized starting from L-methionine. 1,3,4-Thiadiazole and 1,2,4-triazole scaffolds were prepared by cyclocondensation of the corresponding thiosemicarbazide and finally converted to their thiourea derivatives. Structures of the synthesized compounds [4][5][6][7][8][9][10][11][12] were confirmed by IR, 1 H-NMR and 13 C-NMR spectral data and elemental analysis.
Boronic acid compounds with different substituted groups were handled to synthesize various ligands encoded as B1, B2, B3, B4, B5, B6, B7 and B8. B5 and B7 were tested for the cytotoxic activity against the prostate cancer cells and it was found that the cell viability of cancer cells was decreased while most of the healthy cells could still be viable. 5 µM solutions of B5 and B7 decreased the cell viability to 33% and 44% whereas healthy cells were 71% and 95%, respectively, after treatment. Antimicrobial properties were explored against the bacterial and fungal microorganisms with B1, B5 and B7. The inhibition zones were evaluated for all boronic structures, and the growth inhibition zones were determined in a range of 7–13 mm diameter for different microorganism species. Staphylococcus aureus was the common microorganism that three boronic compounds with imine ligands showed the activity. Antioxidant features of B2, B3, B4, B5, B6, B7 and B8 were investigated by different processes such as Beta-carotene bleaching (BCB), 2,2-diphenyl picryl hydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and CUPric reducing antioxidant capacity (CUPRAC) methods. Significant antioxidant activity was achieved by the phenyl boronic based ligands and these compounds demonstrated as much activity as standards (α-Toc and BHT). In addition, all structures were applied properly without any decomposition during the experiments. They were rather stable both in aqueous media and solid state.
Insect repellents are topically applied to the skin and clothing of human and pet to keep flies, mosquitoes, and ticks away. Two important repellents, N,N-diethyl-meta-toluamide (DEET) and Picaridin, have been widely used since their discovery. Although repellency and toxicological effects of DEET and Picaridin on human being and insects are well documented without understanding molecular mechanisms, there have been no attempts to study their effects on microorganisms up to now. In the current study, DEET and Picaridin have been investigated for their antimicrobial characteristics against a broad range of microorganisms including bacteria, yeast, and fungi for the first time. They exhibited considerable antibacterial, anticandidal and antifungal properties. Even though bacteria was found to be more sensitive to Picaridin, yeast and fungi were more susceptible to DEET. Antimicrobial properties of these two repellents will increase the usage and application areas of the products containing DEET and Picaridin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.