Wireless sensor networks (WSNs) can be used in agriculture to provide farmers with a large amount of information. Precision agriculture (PA) is a management strategy that employs information technology to improve quality and production. Utilizing wireless sensor technologies and management tools can lead to a highly effective, green agriculture. Based on PA management, the same routine to a crop regardless of site environments can be avoided. From several perspectives, field management can improve PA, including the provision of adequate nutrients for crops and the wastage of pesticides for the effective control of weeds, pests, and diseases. This review outlines the recent applications of WSNs in agriculture research as well as classifies and compares various wireless communication protocols, the taxonomy of energy-efficient and energy harvesting techniques for WSNs that can be used in agricultural monitoring systems, and comparison between early research works on agriculture-based WSNs. The challenges and limitations of WSNs in the agricultural domain are explored, and several power reduction and agricultural management techniques for long-term monitoring are highlighted. These approaches may also increase the number of opportunities for processing Internet of Things (IoT) data.
Abstract:Traditional power supply cords have become less important because they prevent large-scale utilization and mobility. In addition, the use of batteries as a substitute for power cords is not an optimal solution because batteries have a short lifetime, thereby increasing the cost, weight, and ecological footprint of the hardware implementation. Their recharging or replacement is impractical and incurs operational costs. Recent progress has allowed electromagnetic wave energy to be transferred from power sources (i.e., transmitters) to destinations (i.e., receivers) wirelessly, the so-called wireless power transfer (WPT) technique. New developments in WPT technique motivate new avenues of research in different applications. Recently, WPT has been used in mobile phones, electric vehicles, medical implants, wireless sensor network, unmanned aerial vehicles, and so on. This review highlights up-to-date studies that are specific to near-field WPT, which include the classification, comparison, and potential applications of these techniques in the real world. In addition, limitations and challenges of these techniques are highlighted at the end of the article.
This study aims to determine the distance between the mobile sensor node (i.e., bicycle) and the anchor node (i.e., coach) in outdoor and indoor environments. Two approaches were considered to estimate such a distance. The first approach was based on the traditional channel propagation model that used the log-normal shadowing model (LNSM), while the second approach was based on a proposed hybrid particle swarm optimizationartificial neural network (PSO-ANN) algorithm to improve the distance estimation accuracy of the mobile node. The first method estimated the distance according to the LNSM and the measured received signal strength indicator (RSSI) of the anchor node, which in turn used the ZigBee wireless protocol. The LNSM parameters were measured based on the RSSI measurements in both outdoor and indoor environments. A feed-forward neural network type and the Levenberg-Marquardt training algorithm were used to estimate the distance between the mobile node and the coach. The hybrid PSO-ANN algorithm significantly improved the distance estimation accuracy more than the traditional LNSM method without additional components. The hybrid PSO-ANN algorithm achieved a mean absolute error of 0.022 m and 0.208 m for outdoor and indoor environments, respectively. The effect of anchor node density on localization accuracy was also investigated in the indoor environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.