Open source software (OSS) is essential for modern society and, while substantial research has been done on individual (typically central) projects, only a limited understanding of the periphery of the entire OSS ecosystem exists. For example, how are the tens of millions of projects in the periphery interconnected through technical dependencies, code sharing, or knowledge flow? To answer such questions we: a) create a very large and frequently updated collection of version control data in the entire FLOSS ecosystems named World of Code (WoC), that can completely cross-reference authors, projects, commits, blobs, dependencies, and history of the FLOSS ecosystems and b) provide capabilities to efficiently correct, augment, query, and analyze that data. Our current WoC implementation is capable of being updated on a monthly basis and contains over 18B Git objects. To evaluate its research potential and to create vignettes for its usage, we employ WoC in conducting several research tasks. In particular, we find that it is capable of supporting trend evaluation, ecosystem measurement, and the determination of package usage. We expect WoC to spur investigation into global properties of OSS development leading to increased resiliency of the entire OSS ecosystem. Our infrastructure facilitates the discovery of key technical dependencies, code flow, and social networks that provide the basis to determine the structure and evolution of the relationships that drive FLOSS activities and innovation.
Graphs of developer networks are important for software engineering research and practice. For these graphs to realistically represent the networks, accurate developer identities are imperative. We aim to identify developer identity errors amalgamated from open source software repositories generated by version control systems, investigate the nature and prevalence of these errors, design corrective algorithms, and estimate the impact of the errors on networks inferred from this data. We investigate these questions using a collection of over 1B Git commits with over 23M recorded author identities. By inspecting the author strings that occur most frequently, we group identity errors into categories. We then augment the author strings with three behavioral fingerprints: time-zone frequencies, the set of files modified, and a vector embedding of the commit messages. We create a manually validated set of identities for a subset of OpenStack developers using an active learning approach and use it to fit supervised learning models to predict the identities for the remaining author strings in OpenStack. We then compare these predictions with a competing commercially available effort and a leading research method. Finally, we compare network measures for file-induced author networks based on corrected and raw data. We find commits done from different environments, misspellings, organizational ids, default values, and anonymous IDs to be the major sources of errors. We also find supervised learning methods to reduce errors by several times in comparison to existing research and commercial methods and the active learning approach to be an effective way to create validated datasets. Results also indicate that correction of developer identity has a large impact on the inference of the social network. We believe that our proposed Active Learning Fingerprint Based Anti-Aliasing (ALFAA) approach will expedite research progress in the software engineering domain for applications that depend upon graphs of developers or other social networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.