The availability of high-quality RNA-sequencing and genotyping data of post-mortem brain collections from consortia such as CommonMind Consortium (CMC) and the Accelerating Medicines Partnership for Alzheimer’s Disease (AMP-AD) Consortium enable the generation of a large-scale brain cis-eQTL meta-analysis. Here we generate cerebral cortical eQTL from 1433 samples available from four cohorts (identifying >4.1 million significant eQTL for >18,000 genes), as well as cerebellar eQTL from 261 samples (identifying 874,836 significant eQTL for >10,000 genes). We find substantially improved power in the meta-analysis over individual cohort analyses, particularly in comparison to the Genotype-Tissue Expression (GTEx) Project eQTL. Additionally, we observed differences in eQTL patterns between cerebral and cerebellar brain regions. We provide these brain eQTL as a resource for use by the research community. As a proof of principle for their utility, we apply a colocalization analysis to identify genes underlying the GWAS association peaks for schizophrenia and identify a potentially novel gene colocalization with lncRNA RP11-677M14.2 (posterior probability of colocalization 0.975).
Rapid development of multiple drug resistance against current therapies is a major barrier in the treatment of cancer. Therefore, anticancer agents that can overcome acquired drug resistance in cancer cells are of great importance. Previously, we have demonstrated that ethyl 2-amino-4-(2-ethoxy-2-oxoethyl)-6-phenyl-4H-chromene-3-carboxylate (5a, sHA 14-1), a stable analogue of ethyl 2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (6, HA 14-1), mitigates drug resistance and synergizes with a variety of cancer therapies in leukemia cells. Structure-activity relationship (SAR) studies of 5a guided the development of ethyl 2-amino-6-(3',5'-dimethoxyphenyl)-4-(2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (5q, CXL017), a compound with low micromolar cytotoxicity against a wide-range of hematologic and solid tumor cells. More excitingly, our studies of 5q in camptothecin (CCRF-CEM/C2) and mitoxantrone (HL-60/MX2) resistant cancer cells highlight its ability to selectively kill drug-resistant cells over parent cancer cells. 5q inhibits tumor cell growth through the induction of apoptosis, with detailed mechanism of its selectivity toward drug-resistant cancer cells under investigation. These results suggest that 5q is a promising candidate for treatment of cancers with multiple drug resistance.
IDH1 plays a critical role in a number of metabolic processes and serves as a key source of cytosolic NADPH under conditions of cellular stress. However, few inhibitors of wild-type IDH1 have been reported. Here we present the discovery and biochemical characterization of two novel inhibitors of wild-type IDH1. In addition, we present the first ligand-bound crystallographic characterization of these novel small molecule IDH1 binding pockets. Importantly, the NADPH competitive α,β-unsaturated enone 1 makes a unique covalent linkage through active site H315. As few small molecules have been shown to covalently react with histidine residues, these data support the potential utility of an underutilized strategy for reversible covalent small molecule design.
Patients with hormone-refractory prostate cancer (HRPC) have an estimated median survival of only 10 months because of acquired drug resistance, urging the need to develop therapies against the drug-resistant HRPC phenotype. Accumulating evidence suggests that overexpressing antiapoptotic Bcl-2 family proteins is at least partially responsible for the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.