Trunk stiffness is an important parameter for trunk stability analysis and needs to be evaluated accurately. Discrepancies regarding the dependence of trunk stiffness on the direction of movement in the sagittal plane suggest inherent sources of error that require explanation. In contrast to the common assumption that the muscle stiffness remains constant prior to the induction of a reflex during position perturbations, it is postulated that muscle-stiffness changes of nonneural origin occur and alter the experimental trunk stiffness, causing it to depend on the sagittal direction. This is confirmed through reinterpretation of existing test data for a healthy subject, numerical simulation, and sensitivity analysis using a biomechanical model. The trunk stiffness is determined through a static approach (in forward and backward directions) and compared with the model stiffness for assumed scenarios involving deactivated muscles. The difference in stiffness between the opposite directions reaches 17.5% without a preload and decreases when a moderate vertical preload is applied. The increased muscle activation induced by preloads or electrical stimuli explains the apparent discrepancies observed in previous studies. The experimental stiffness invariably remains between low and high model-stiffness estimates based on extreme scenarios of the postulated losses of muscle activation, thereby confirming our hypothesis.
In this paper, a new 1D constitutive model for shape memory alloy using strain and temperature as control variables is presented. The new formulation is restricted to the 1D stress case and takes into account the martensite reorientation and the asymmetry of the SMA behavior in tension and compression. Numerical implementation of the new model in a finite element code was conducted. The numerical results for superelastic behavior in tension and compression tests are presented and were compared to experimental data taken from the literature. Other numerical tests are presented, showing the model’s ability to reproduce the main aspects of SMA behavior such as the shape memory effect and the martensite reorientation under cyclic loading. Finally, to demonstrate the utility of the new constitutive model, a dynamic test of a bi-clamped SMA bending beam under forced oscillation is described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.