This paper addresses the synthesis of Petri net (PN) controller for the forbidden state transition problem with a new utilisation of the theory of regions. Moreover, as any method of control synthesis based on a reachability graph, the theory of regions suffers from the combinatorial explosion problem. The proposed work minimises the number of equations in the linear system of theory of regions and therefore one can reduce the computation time. In this paper, two different approaches are proposed to select minimal cuts in the reachability graph in order to synthesise a PN controller. Thanks to a switch from one cut to another, one can activate and deactivate the corresponding PNcontroller. An application is implemented in a flexible manufacturing system to illustrate the present method. Finally, comparison with previous works with experimental results in obtaining a maximally permissive controller is presented.
A data mining approach is integrated in this work for predictive sequential maintenance along with information on spare parts based on the history of the maintenance data. For most practical problems, the simple failure of one part of a given piece of equipment induces the subsequent failure of the other parts of said equipment. For example, it is frequently observed in mining industries that, like many other industries, the maintenance of conventional equipment is carried out in sequence. Besides, depending on the state of parts of the equipment, many parts can be consumed and replaced. Consequently, with a group of spare parts consumed sequentially in various maintenance activities, it is possible to discover sequential maintenance activities. From maintenance data with predefined support or threshold values and spare parts information, this work determines the sequential patterns of maintenance activities. The proposed method predicts the occurrence of the next maintenance activity with information on the consumed spare parts. An industrial real case study is presented in this paper and it is well-noticed that our experimental results shed new light on the maintenance prediction using data mining.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.