The world has witnessed mass forced population displacement across the globe. Population displacement has various indications, with different social and policy consequences. Mitigation of the humanitarian crisis requires tracking and predicting the population movements to allocate the necessary resources and inform the policymakers. The set of events that triggers population movements can be traced in the news articles. In this paper, we propose the Population Displacement-Signal Extraction Framework (PD-SEF) to explore a large news corpus and extract the signals of forced population displacement. PD-SEF measures and evaluates violence signals, which is a critical factor of forced displacement from it. Following signal extraction, we propose a displacement prediction model based on extracted violence scores. Experimental results indicate the effectiveness of our framework in extracting high quality violence scores and building accurate prediction models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.