Regeneration of lost tail is of great importance to lizards. Anolis carolinensis, a green lizard, is capable of regenerating its tail efficiently after autotomy. Hence, it is considered as a model organism in regeneration study. A. carolinensis shed its tail in order to distract the predator's attention and thus makes a way to escape. Restoring of the amputated tail takes several days and the mechanism is currently clearly understood. Although save its life, tail regeneration is associated with the impairment of several vital functions in Anoles. In addition, various differences have been observed between original and regenerated tail in terms of mechanism and structure. To date, very little work has been conducted on tail autotomy and regeneration at molecular and genetic level. The genes responsible for regeneration in anoles are identified recently. These genes are evolutionarily conserved through all tetrapod vertebrates. They are, however, in a state of 'switched-off' in other vertebrates including humans. Consequently, a throughout study of these so called 'switched-off' genes may provide a way of restoring lost organs in human, and thus could revolutionize the modern medical science.
Regeneration of lost tail is of great importance to lizards. Anolis carolinensis, a green lizard, is capable of regenerating its tail efficiently after autotomy. Hence, it is considered as a model organism in regeneration study. A. carolinensis shed its tail in order to distract the predator's attention and thus makes a way to escape. Restoring of the amputated tail takes several days and the mechanism is currently clearly understood. Although save its life, tail regeneration is associated with the impairment of several vital functions in anoles. In addition, various differences have been observed between original and regenerated tail in terms of mechanism and structure. To date, very little work has been conducted on tail autotomy and regeneration at molecular and genetic level. The genes responsible for regeneration in anoles are identified recently. These genes are evolutionarily conserved through all tetrapod vertebrates. They are, however, in a state of 'switchedoff' in other vertebrates including humans. Consequently, a throughout study of these so-called 'switched-off' genes may provide a way of restoring lost organs in human, and thus could revolutionize the modern medical science.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.