BackgroundIsocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) metabolic genes encode cytosolic and mitochondrial enzymes that catalyze the conversion of isocitrate to α-ketoglutarate. Acquired somatic mutations of IDH1 and IDH2 have recently been reported in some types of brain tumors and a small proportion of acute myeloid leukemia (AML) cases.MethodsTwo-hundred and thirty newly diagnosed AML patients were analyzed for the presence of IDH1 and IDH2 heterozygous mutations by polymerase chain reaction-denaturing high performance liquid chromatography (PCR-DHPLC) followed by direct sequencing. Clinical and biological characteristics were analyzed and correlated to the IDH mutational status. Coexisting mutations such as FLT3, PML-RARA, RAS, AML1, and NPM1 mutations were additionally explored.ResultsThe prevalence of IDH1 and IDH2 mutations was 8.7% (20/230) and 10.4% (24/230), respectively. Six missense mutations were identified among IDH1-mutated cases; p.R132H (n = 8), p.R132C (n = 6), p.R132S (n = 2), p.R132G (n = 2), p.R132L (n = 1), and p.I99M (n = 1). Two missense mutations were found in IDH2-mutated cases; p.R140Q (n = 20) and p.R172K (n = 4). No patients had dual IDH1 and IDH2 mutations. About 18% of AML with normal cytogenetics and 31% of acute promyelocytic leukemia had IDH mutations. Half of the IDH-mutated cohort had normal karyotype and the major FAB subtype was AML-M2. Interestingly, IDH1- and IDH2-mutated cases predominantly had NPM1 mutations (60-74%) as compared to the wild type (P < 0.001). Very few IDH-mutated cases had FLT3 and/or RAS abnormalities and none of them had AML1 mutations. Older age and higher median platelet counts were significantly associated with IDH2 mutations although the clinical impact of either IDH1 or IDH2 mutations on patients' overall survival could not be observed.ConclusionOverall, 19% of newly diagnosed AML patients had alterations of IDH genes. No patients concurrently carried both IDH1 and IDH2 mutations suggesting that these mutations were mutually exclusive. NPM1 mutation appears as a major coexisting genetic mutation in IDH-mutated patients. Our present data failed to support the prognostic relevance of IDH mutations although alterations of these metabolic genes potentially have an important role in leukemia development.
Background
Plasmodium vivax (P. vivax) is the dominant Plasmodium spp. causing the disease malaria in low-transmission regions outside of Africa. These regions often feature high proportions of asymptomatic patients with sub-microscopic parasitaemia and relapses. Naturally acquired antibody responses are induced after Plasmodium infection, providing partial protection against high parasitaemia and clinical episodes. However, previous work has failed to address the presence and maintenance of such antibody responses to P. vivax particularly in low-transmission regions.
Methods
We followed 34 patients in western Thailand after symptomatic P. vivax infections to monitor antibody kinetics over 9 months, during which no recurrent infections occurred. We assessed total IgG, IgG subclass and IgM levels to up to 52 P. vivax proteins every 2–4 weeks using a multiplexed Luminex® assay and identified protein-specific variation in antibody longevity. Mathematical modelling was used to generate the estimated half-life of antibodies, long-, and short-lived antibody-secreting cells.
Results
Generally, an increase in antibody level was observed within 1-week post symptomatic infection, followed by an exponential decay of different rates. We observed mostly IgG1 dominance and IgG3 sub-dominance in this population. IgM responses followed similar kinetic patterns to IgG, with some proteins unexpectedly inducing long-lived IgM responses. We also monitored antibody responses against 27 IgG-immunogenic antigens in 30 asymptomatic individuals from a similar region. Our results demonstrate that most antigens induced robust and long-lived total IgG responses following asymptomatic infections in the absence of (detected) boosting infections.
Conclusions
Our work provides new insights into the development and maintenance of naturally acquired immunity to P. vivax and will guide the potential use of serology to indicate immune status and/or identify populations at risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.