Background Diseases related to cerebrospinal fluid flow, such as hydrocephalus, syringomyelia, and Chiari malformation, are often found in small dogs. Although studies in human medicine have revealed a correlation with cerebrospinal fluid flow in these diseases by magnetic resonance imaging, there is little information and no standard data for normal dogs. Objectives The purpose of this study was to obtain cerebrospinal fluid flow velocity data from the cerebral aqueduct and subarachnoid space at the foramen magnum in healthy beagle dogs. Methods Six healthy beagle dogs were used in this experimental study. The dogs underwent phase-contrast and time-spatial labeling inversion pulse magnetic resonance imaging. Flow rate variations in the cerebrospinal fluid were observed using sagittal time-spatial labeling inversion pulse images. The pattern and velocity of cerebrospinal fluid flow were assessed using phase-contrast magnetic resonance imaging within the subarachnoid space at the foramen magnum level and the cerebral aqueduct. Results In the ventral aspect of the subarachnoid space and cerebral aqueduct, the cerebrospinal fluid was characterized by a bidirectional flow throughout the cardiac cycle. The mean ± SD peak velocities through the ventral and dorsal aspects of the subarachnoid space and the cerebral aqueduct were 1.39 ± 0.13, 0.32 ± 0.12, and 0.76 ± 0.43 cm/s, respectively. Conclusions Noninvasive visualization of cerebrospinal fluid flow movement with magnetic resonance imaging was feasible, and a reference dataset of cerebrospinal fluid flow peak velocities was obtained through the cervical subarachnoid space and cerebral aqueduct in healthy dogs.
2-Month-old, three related Perro de Presa Canario dogs were evaluated for similar neurological symptoms like circling, head pressing, depressed mental status, hypermetria, and vocalization. On magnetic resonance imaging (MRI) of the brain, there were large, bilaterally symmetrical lesions with involvement of thalamus, and brainstem that were T2-and FLAIR-hyperintense and T1-iso/hypointense. There was no inclusion of cerebellum. Single-voxel spectroscopy acquisition was located in the thalamus where abnormalities were found in MR images. The results of magnetic resonance spectroscopy (MRS) showed markedly decreased N-acetylaspartic acid value. Euthanasia was performed and lesions consistent with the canine spongy degeneration. Alteration in metabolites in the brain can be determined by MRS, which helps in diagnosing degeneration/leukodystrophy of the central nervous system in dogs.
This paper describes the computed tomographic features of ovarian masses in dogs. The CT images of female dogs with a confirmed histological diagnosis of ovarian tumors or ovarian cystic diseases were studied retrospectively. Seven dogs met the inclusion criteria. The morphological features of ovarian tumors and ovarian cystic diseases coincided to a certain degree, but ovarian tumors tended to be predominantly solid. Objective measurements of Hounsfield units (HU) suggest that benign lesions may show lower HU values than malignant tumors and mild contrast enhancement because of the small soft tissue composition. CT is useful for a differential diagnosis of ovarian masses by providing additional information on the imaging features of the masses and an evaluation of metastases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.