During feeding, the gut microbiota contributes to the host energy acquisition and metabolic regulation thereby influencing the development of metabolic disorders such as obesity and diabetes. Short-chain fatty acids (SCFAs) such as acetate, butyrate, and propionate, which are produced by gut microbial fermentation of dietary fiber, are recognized as essential host energy sources and act as signal transduction molecules via G-protein coupled receptors (FFAR2, FFAR3, OLFR78, GPR109A) and as epigenetic regulators of gene expression by the inhibition of histone deacetylase (HDAC). Recent evidence suggests that dietary fiber and the gut microbial-derived SCFAs exert multiple beneficial effects on the host energy metabolism not only by improving the intestinal environment, but also by directly affecting various host peripheral tissues. In this review, we summarize the roles of gut microbial SCFAs in the host energy regulation and present an overview of the current understanding of its physiological functions.
Excess energy is stored primarily as triglycerides, which are mobilized when demand for energy arises. Dysfunction of energy balance by excess food intake leads to metabolic diseases, such as obesity and diabetes. Free fatty acids (FFAs) provided by dietary fat are not only important nutrients, but also contribute key physiological functions via FFA receptor (FFAR)-mediated signaling molecules, which depend on FFAs’ carbon chain length and the ligand specificity of the receptors. Functional analyses have revealed that FFARs are critical for metabolic functions, such as peptide hormone secretion and inflammation, and contribute to energy homeostasis. In particular, recent studies have shown that the administration of selective agonists of G protein-coupled receptor (GPR) 40 and GPR120 improved glucose metabolism and systemic metabolic disorders. Furthermore, the anti-inflammation and energy metabolism effects of short chain FAs have been linked to the activation of GPR41 and GPR43. In this review, we summarize recent progress in research on FFAs and their physiological roles in the regulation of energy metabolism.
Nutrition regulates energy balance; however, dysfunction of energy balance can cause metabolic disorders, such as obesity and diabetes. Fatty acids are an essential energy source and signaling molecules that regulate various cellular processes and physiological functions. Recently, several orphan G protein-coupled receptors were identified as free fatty acid receptors (FFARs). GPR40/FFAR1 and GPR120/FFAR4 are activated by medium- and/or long-chain fatty acids, whereas GPR41/FFAR3 and GPR43/FFAR2 are activated by short-chain fatty acids. FFARs are regarded as targets for novel drugs to treat metabolic disorders, such as obesity and type 2 diabetes, because recent studies have showed that these receptors are involved in the energy metabolism in various tissues, including adipose, intestinal, and immune tissue. In this review, we summarize physiological roles of the FFARs, provide a comprehensive overview of energy regulation by FFARs, and discuss new prospects for treatment of metabolic disorders.
The regulation of inflammatory responses within adipose tissue by various types of immune cells is closely related to tissue homeostasis and progression of metabolic disorders such as obesity and type 2 diabetes. G-protein-coupled receptor 43 (GPR43), which is activated by short-chain fatty acids (SCFAs), is known to be most abundantly expressed in white adipose tissue and to modulate metabolic processes. Although GPR43 is also expressed in a wide variety of immune cells, whether and how GPR43 in adipose tissue immune cells regulates the inflammatory responses and metabolic homeostasis remains unknown. In this study, we investigated the role of GPR43 in adipose tissue macrophages by using Gpr43-deficient mice and transgenic mice with adipose-tissue-specific overexpression of GPR43. We found that GPR43 activation by SCFA resulted in induction of the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) in anti-inflammatory M2-type macrophages within adipose tissue. By contrast, this effect was not noted in inflammatory M1-type macrophages, suggesting that GPR43 plays distinct functions depending on macrophage types. Local TNF-α signaling derived from steady-state adipose tissue is associated with proper tissue remodeling as well as suppression of fat accumulation. Thus, GPR43-involving mechanism that we have identified supports maintenance of adipose tissue homeostasis and increase in metabolic activity. This newly identified facet of GPR43 in macrophages may have clinical implications for immune-metabolism related episodes.
Progesterone receptor membrane components 1 and 2, neudesin, and neuferricin belong to the membraneassociated progesterone receptor (MAPR) family. Recently, sex steroid membrane receptors have gained attention because of their potential involvement in sex hormone-mediated rapid non-genomic effects, which cannot currently be explained by the genomic action of nuclear receptors. Progesterone may increase cell proliferation and survival via nongenomic effects including the activation of the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3- kinase (PI3K) pathways through MAPRs. Moreover, the unique expression of MAPRs suggests that they could be used as biomarkers and drug targets for sex steroid-related cancers and other diseases. In this review, we summarize the physiological roles of the MAPRs, provide a comprehensive overview of their progesterone-mediated non-genomic actions, and discuss new insights into their potential as therapeutic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.