Background
South Korea took preemptive action against coronavirus disease (COVID-19) by implementing extensive testing, thorough epidemiological investigation, strict social distancing, and rapid treatment of patients according to disease severity. The Korean government entrusted large-scale hospitals with the operation of living and treatment support centers (LTSCs) for the management for clinically healthy COVID-19 patients.
Objective
The aim of this paper is to introduce our experience implementing information and communications technology (ICT)-based remote patient management systems at a COVID-19 LTSC.
Methods
We adopted new electronic health record templates, hospital information system (HIS) dashboards, cloud-based medical image sharing, a mobile app, and smart vital sign monitoring devices.
Results
Enhancements were made to the HIS to assist in the workflow and care of patients in the LTSC. A dashboard was created for the medical staff to view the vital signs and symptoms of all patients. Patients used a mobile app to consult with their physician or nurse, answer questionnaires, and input self-measured vital signs; the results were uploaded to the hospital information system in real time. Cloud-based image sharing enabled interoperability between medical institutions. Korea’s strategy of aggressive mitigation has “flattened the curve” of the rate of infection. A multidisciplinary approach was integral to develop systems supporting patient care and management at the living and treatment support center as quickly as possible.
Conclusions
Faced with a novel infectious disease, we describe the implementation and experience of applying an ICT-based patient management system in the LTSC affiliated with Seoul National University Hospital. ICT-based tools and applications are increasingly important in health care, and we hope that our experience will provide insight into future technology-based infectious disease responses.
ObjectivesTriage is a process to accurately assess and classify symptoms to identify and provide rapid treatment to patients. The Korean Triage and Acuity Scale (KTAS) is used as a triage instrument in all emergency centers. The aim of this study was to train and compare machine learning models to predict KTAS levels.MethodsThis was a cross-sectional study using data from a single emergency department of a tertiary university hospital. Information collected during triage was used in the analysis. Logistic regression, random forest, and XGBoost were used to predict the KTAS level.ResultsThe models with the highest area under the receiver operating characteristic curve (AUROC) were the random forest and XGBoost models trained on the entire dataset (AUROC = 0.922, 95% confidence interval 0.917–0.925 and AUROC = 0.922, 95% confidence interval 0.918–0.925, respectively). The AUROC of the models trained on the clinical data was higher than that of models trained on text data only, but the models trained on all variables had the highest AUROC among similar machine learning models.ConclusionsMachine learning can robustly predict the KTAS level at triage, which may have many possibilities for use, and the addition of text data improves the predictive performance compared to that achieved by using structured data alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.