Abstract:In recent years, Convolutional Neural Networks (ConvNets) have rapidly emerged as a widespread machine learning technique in a number of applications especially in the area of medical image classification and segmentation. In this paper, we propose a novel approach that uses ConvNet for classifying brain medical images into healthy and unhealthy brain images. The unhealthy images of brain tumors are categorized also into low grades and high grades. In particular, we use the modified version of the Alex Krizhevsky network (AlexNet) deep learning architecture on magnetic resonance images as a potential tumor classification technique. The classification is performed on the whole image where the labels in the training set are at the image level rather than the pixel level. The results showed a reasonable performance in characterizing the brain medical images with an accuracy of 91.16%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.