This paper presents an automatic content-based image retrieval (CBIR) system for brain tumors on T1-weighted contrast-enhanced magnetic resonance images (CE-MRI). The key challenge in CBIR systems for MR images is the semantic gap between the low-level visual information captured by the MRI machine and the high-level information perceived by the human evaluator. The traditional feature extraction methods focus only on low-level or high-level features and use some handcrafted features to reduce this gap. It is necessary to design a feature extraction framework to reduce this gap without using handcrafted features by encoding/combining low-level and high-level features. Deep learning is very powerful for feature representation that can depict low-level and high-level information completely and embed the phase of feature extraction in self-learning. Therefore, we propose a deep convolutional neural network VGG19-based novel feature extraction framework and apply closed-form metric learning to measure the similarity between the query image and database images. Furthermore, we adopt transfer learning and propose a block-wise fine-tuning strategy to enhance the retrieval performance. The extensive experiments are performed on a publicly available CE-MRI dataset that consists of three types of brain tumors (i.e., glioma, meningioma, and pituitary tumor) collected from 233 patients with a total of 3064 images across the axial, coronal, and sagittal views. Our method is more generic, as we do not use any handcrafted features; it requires minimal preprocessing, tested as robust on fivefold cross-validation, can achieve a fivefold mean average precision of 96.13%, and outperforms the state-of-the-art CBIR systems on the CE-MRI dataset. INDEX TERMS Brain tumor retrieval, block-wise fine-tuning, closed-form metric learning, convolutional neural networks, feature extraction, transfer learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.