Optimization of dynamic engineering systems requires an integrated approach that accounts for the coupling between embodiment design and control system design, simultaneously. Generally known as combined design and control (co-design) optimization, these methods offer superior system's performance and reduced costs. Despite the widespread use of co-design approaches in the literature, not much work has been done to address the issue of uncertainty in co-design problem formulations. This is problematic as all engineering models contain some level of uncertainty that might negatively affect the system's performance, if overlooked. While in our previous study we developed a robust co-design approach, a more rigorous evaluation of probabilistic constraints is required to obtain the targeted reliability levels for probabilistic constraints. Therefore, we propose and implement a novel stochastic co-design approach based on the principles of reliability-based design optimization (RBDO) to explicitly account for uncertainties from design decision variables and problem parameters. In particular, a reliability-based, multidisciplinary dynamic system design optimization (RB-MDSDO) formulation is developed using the sequential optimization and reliability assessment (SORA) algorithm, such that the analysis-type dynamic equality constraints are satisfied at the mean values of random variables, as well as their most probable points (MPPs). The proposed approach is then implemented for two case studies and the results were benchmarked through Monte Carlo simulation (MCS) to indicate the impact of including reliability measures in co-design formulations.
Optimization of dynamic engineering systems generally requires problem formulations that account for the coupling between embodiment design and control system design simultaneously. Such formulations are commonly known as combined optimal design and control (co-design) problems, and their application to deterministic systems is well established in the literature through a variety of methods. However, an issue that has not been addressed in the co-design literature is the impact of the inherent uncertainties within a dynamic system on its integrated design solution. Accounting for these uncertainties transforms the standard, deterministic co-design problem into a stochastic one, thus requiring appropriate stochastic optimization approaches for its solution. This paper serves as the starting point for research on stochastic co-design problems by proposing and solving a novel problem formulation based on robust design optimization (RDO) principles. Specifically, a co-design method known as multidisciplinary dynamic system design optimization (MDSDO) is used as the basis for an RDO problem formulation and implementation. The robust objective and inequality constraints are computed per usual as functions of their first-order-approximated means and variances, whereas analysis-based equality constraints are evaluated deterministically at the means of the random decision variables. The proposed stochastic co-design problem formulation is then implemented for two case studies, with the results indicating the importance of the robust approach on the integrated design solutions and performance measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.