Single-shaft gas turbine and its cycles are sensitive to frequency drops and, therefore, sudden change loads or large frequency dips might affect their stability. This phenomenon is related to the reduction of the air mass flow passing through the machine during the frequency dips, which might lead to an interaction between governor and temperature control loop. In this paper, the performance of the combined cycle and steam-injected gas turbine are studied during frequency dips and transient maneuvers. For this purpose, two similar units are developed based on these cycles and their performances are studied in different scenarios. The simulation results show that the steam injected gas turbine has a better performance during frequency drops and it can handle relatively larger change loads.
Single-shaft gas turbines are sensitive to frequency changes which might affect the grid stability during large frequency drops. This paper presents a new control system that uses steam injection as an auxiliary input to improve the transient performance of the gas turbine during frequency drops. Steam injection is beneficial because it reduces the peak temperature in the combustion chamber and augments the output power by increasing the mass flow through the turbine. The use of this auxiliary input is based on the event-based control approach. It means that during the frequency drop, the controller exploits the steam injection to help the main control loop recover the frequency and when the frequency reaches its predefined value, the system will return to its normal operation. The performance of the proposed control algorithm is investigated under different scenarios and the results show that the application of steam injection improves the performance of the regular control algorithm significantly, especially near full load condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.