In this study, electrospinning has been employed to produce micro to nano scale fibres of whey protein in order to investigate their potential for use in the food industry. Initially, spinning of pure whey protein proved challenging; so in order to facilitate the spinning of freshly prepared aqueous solutions, small amounts of polyethylene oxide (as low as 1% w/w in solution) were incorporated in the spinning solutions. The electrospun composite polyethylene-oxide/whey fibres exhibited diameters in the region of 100 to 400 nm, showing the potential to build fibre bundles from this size up. Time-dependent examinations of pure whey protein aqueous solutions were conducted using rheometery and small angle neutron scattering techniques, with the results showing a substantial change in the solution properties with time and stirring; and allowing the production of fibres, albeit with large diameters, without the need for an additive. The spinability is related to the potential of the whey protein composites to form aggregate structures, either through hydration and interaction with neighbouring proteins, or through interaction with the polyethylene oxide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.