Inverse Weibull (IW) distribution is one of the widely used probability distributions for nonnegative data modelling, specifically, for describing degradation phenomena of mechanical components. In this paper, by compounding IW and power series distributions we introduce a new lifetime distribution. The compounding procedure follows the same set-up carried out by Adamidis and Loukas [A lifetime distribution with decreasing failure rate. Stat Probab Lett. 1998;39:35-42]. We provide mathematical properties of this new distribution such as moments, estimation by maximum likelihood with censored data, inference for a large sample and the EM algorithm to determine the maximum likelihood estimates of the parameters. Furthermore, we characterize the proposed distributions using a simple relationship between two truncated moments and maximum entropy principle under suitable constraints. Finally, to show the flexibility of this type of distributions, we demonstrate applications of two real data sets.
It is well-known that the skew-normal distribution can provide an alternative model to the normal distribution for analyzing asymmetric data. The aim of this paper is to propose two goodness-of-fit tests for assessing whether a sample comes from a multivariate skew-normal (MSN) distribution. We address the problem of multivariate skew-normality goodness-of-fit based on the empirical Laplace transform and empirical characteristic function, respectively, using the canonical form of the MSN distribution. Applications with Monte Carlo simulations and real-life data examples are reported to illustrate the usefulness of the new tests.
Goodness-of-fit tests are constructed for the two-parameter Birnbaum-Saunders distribution in the case where the parameters are unknown and therefore are estimated from the data. In each test, the procedure starts by computing efficient estimators of the parameters. Then the data are transformed by a normal transformation and normality tests are applied on the transformed data, thereby avoiding reliance on parametric asymptotic critical values or the need for bootstrap computations. Three classes of tests are considered, the first class being the classical tests based on the empirical distribution function, while the other class utilizes the empirical characteristic function and the final class utilizes the Kullback-Leibler information function. All methods are extended to cover the case of generalized three-parameter Birnbaum-Saunders distributions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.