[1] Internal tide driven mixing plays a key role in sustaining the deep ocean stratification and meridional overturning circulation. Internal tides can be generated by topographic horizontal scales ranging from hundreds of meters to tens of kilometers. State of the art topographic products barely resolve scales smaller than 10 km in the deep ocean. On these scales abyssal hills dominate ocean floor roughness. The impact of abyssal hill roughness on internal-tide generation is evaluated in this study. The conversion of M 2 barotropic to baroclinic tidal energy is calculated based on linear wave theory both in real and spectral space using the Shuttle Radar Topography Mission SRTM30_PLUS bathymetric product at 1/120 resolution with and without the addition of synthetic abyssal hill roughness. Internal tide generation by abyssal hills integrates to 0.1 TW globally or 0.03 TW when the energy flux is empirically corrected for supercritical slope (i.e., 10% of the energy flux due to larger topographic scales resolved in standard products in both cases). The abyssal hill driven energy conversion is dominated by mid-ocean ridges, where abyssal hill roughness is large. Focusing on two regions located over the Mid-Atlantic Ridge and the East Pacific Rise, it is shown that regionally linear theory predicts an increase of the energy flux due to abyssal hills of up to 100% or 60% when an empirical correction for supercritical slopes is attempted. Therefore, abyssal hills, unresolved in state of the art topographic products, can have a strong impact on internal tide generation, especially over mid-ocean ridges.
Abstract. We present Nemo-Nordic, a Baltic and
North Sea model based on the NEMO ocean engine. Surrounded by highly industrialized
countries, the Baltic and North seas and their assets associated with
shipping, fishing and tourism are vulnerable to anthropogenic pressure and
climate change. Ocean models providing reliable forecasts and enabling
climatic studies are important tools for the shipping infrastructure and to
get a better understanding of the effects of climate change on the marine
ecosystems. Nemo-Nordic is intended to be a tool for both short-term and
long-term simulations and to be used for ocean forecasting as well as process
and climatic studies. Here, the scientific and technical choices within
Nemo-Nordic are introduced, and the reasons behind the design of the model
and its domain and the inclusion of the two seas are explained. The model's
ability to represent barotropic and baroclinic dynamics, as well as the
vertical structure of the water column, is presented. Biases are shown and
discussed. The short-term capabilities of the model are presented, especially
its capabilities to represent sea level on an hourly timescale with a high
degree of accuracy. We also show that the model can represent longer
timescales, with a focus on the major Baltic inflows and the variability in
deep-water salinity in the Baltic Sea.
A direct calculation of the tidal generation of internal waves over the global ocean is presented. The calculation is based on a semianalytical model, assuming that the internal tide characteristic slope exceeds the bathymetric slope (subcritical slope) and the bathymetric height is small relative to the vertical scale of the wave, as well as that the horizontal tidal excursion is smaller than the horizontal topographic scale. The calculation is performed for the M 2 tidal constituent. In contrast to previous similar computations, the internal tide is projected onto vertical eigenmodes, which gives two advantages. First, the vertical density profile and the finite ocean depth are taken into account in a fully consistent way, in contrast to earlier work based on the WKB approximation. Nevertheless, the WKB-based total global conversion follows closely that obtained using the eigenmode decomposition in each of the latitudinal and vertical distributions. Second, the information about the distribution of the conversion energy over different vertical modes is valuable, since the lowest modes can propagate over long distances, while high modes are more likely to dissipate locally, near the generation site. It is found that the difference between the vertical distributions of the tidal conversion into the vertical modes is smaller for the case of very deep ocean than the shallow-ocean depth. The results of the present work pave the way for future work on the vertical and horizontal distribution of the mixing caused by internal tides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.