In order to study the intrinsic size-effects, the stress gradient theory is implemented to a nano-scale beam model in nonlinear flexure. The nonlocal integral elasticity model is considered as a suitable counterpart to examine the softening behavior of nano-beams. Reissner variational principle is extended consistent with the stress gradient theory and applied to establish the differential, constitutive and boundary conditions of a nano-sized beam in nonlinear flexure. The nonlinear integro-differential and boundary conditions of inflected beams in the framework of the nonlocal integral elasticity are determined utilizing the total elastic strain energy formulation. A practical series solution approach in terms of Chebyshev polynomials is introduced to appropriately estimate the kinematic and kinetic field variables. A softening structural behavior is observed in the flexure of the stress gradient and the nonlocal beam in terms of the characteristic parameter and the smaller-is-softer phenomenon is, therefore, confirmed. The flexural response associated with the stress gradient theory is demonstrated to be in excellent agreement with the counterpart results of the nonlocal elasticity model equipped with the Helmholtz kernel function. The nonlocal elasticity theory endowed with the Error kernel function is illustrated to underestimate the flexural results of the stress gradient beam model. Detected numerical benchmark can be efficiently exploited for structural design and optimization of pioneering nano-engineering devices broadly utilized in advanced nano-electro-mechanical systems.
A review of nonlocal theories utilized in the fatigue and fracture modeling of solid structures is addressed in this paper. Numerous papers have been studied for this purpose, and various nonlocal theories such as the nonlocal continuum damage model, stress field intensity model, peridynamics model, elastic-plastic models, energy-based model, nonlocal multiscale model, microstructural sensitive model, nonlocal lattice particle model, nonlocal high cycle fatigue model, low cycle fatigue model, nonlocal and gradient fracture criteria, nonlocal coupled damage plasticity model and nonlocal fracture criterion have been reviewed and summarized in the case of fatigue and fracture of solid structures and materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.