The presence of oxidized sterols (oxysterols) in human serum and lesions has been linked to the initiation and progression of atherosclerosis. Data concerning the origin, identity and quantity of oxysterols in biological samples are controversial and inconsistent. This inconsistency may arise from different analytical methods or handling conditions used by different investigators. In the present study, oxysterol levels and distribution were analyzed by an optimized GC-MS method, in human atherosclerotic coronary and carotid lesions, in atherosclerotic apolipoprotein E deficient mice (E degrees mice) and in native and in vitro oxidized human low and high density lipoproteins. Oxysterol levels were analyzed with a limit of detection of 0.06 - 0.24 ng, with 25-hydroxycholesterol (25-OH) being the least sensitive. In human coronary and carotid lesions, obtained from endatherectomic samples, 27-hydroxycholesterol (27-OH) was the major oxysterol, with about 85% as sterols esterified to fatty acids. While total cholesterol and oxysterols levels were similar in both kinds of human lesions, oxysterol distribution was significantly different. In coronary lesions the mean levels of 27-OH and 7beta-hydroxycholesterol (7beta-OH) were 38% and 20% of total oxysterols, whereas in carotid lesions their mean levels were 66% and 5%, respectively. Unlike in human aortic lesions, 27-OH was entirely absent in E degrees mice, whereas the level of 7alpha-hydroxycholesterol (7alpha-OH) was 28% of the total oxysterols, vs. 5% in human coronary lesions. As 27-OH is an enzymatic product of cholesterol oxidation, this finding may indicate that such an enzymatic process does not take place in E degrees mice.
The total flavonoid content of leaf extracts (70% ethanol) from fig (Ficus carica L.), carob (Ceratonia siliqua L.) and pistachio (Pistacia lentiscus L.) plants were determined by using reverse phase high-performance liquid chromatography (HPLC)-and analyzed by UV/VIS array and electrospray ionization (ESI)-mass spectrometry (MS) detectors. As a base for comparison, flavonoid type and level were also determined in extracts from soybeans and grape seeds. It was found that the major flavonoids in Ficus are quercetin and luteolin, with a total of 631 and 681 mg/kg extract, respectively. In Ceratonia leaves, nine different flavonoids were detected. The major one was myricetin (1486 mg/kg extract), with a similar level in Pistacia (1331 mg/kg extract, myricetin). The present study is the first to report the presence of the isoflavone genistein in the Pistacia leaf, which was discovered to consist of about a third of the genistein level detected in soybean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.