Data available on the thermoelectric properties of polycrystalline semiconductors are inconsistent, riddled with gaps, and ascribe stronger Seebeck effects to polycrystalline samples rather than single crystals.
Studying the possibility of a p-type conduction mechanism in the Ag-doped ZnO can clarify persisting ambiguities in the related materials and devices. Here, utilizing the first principles study by hybrid functional calculations, we conclude that the potential acceptor defects AgZn and VZn are rare in the low Fermi level conditions required for p-type conduction and, hence, can hardly contribute to the hole generation in ZnO regardless of the assumed O-rich condition. Our results also reveal the exothermicity of the reaction between VO and AgZn to form the complex defect VO-2AgZn which is shown to be a less effective donor than VO. The conversion of the VO to a less electronically effective complex defect is proposed as the mechanism responsible for the conductivity instabilities in the silver doped zinc oxide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.