The absence of GPS underwater makes navigation for autonomous underwater vehicles (AUVs) a challenge. Moreover, the use of static beacons in the form of a long baseline (LBL) array limits the operation area to a few square kilometers and requires substantial deployment effort before operations. In this paper, an algorithm for cooperative localization of AUVs is proposed. We describe a form of cooperative Simultaneous Localization and Mapping (SLAM). Each of the robots in the group is equipped with an Inertial Measurement Unit (IMU) and some of them have a range-only sonar sensor that can determine the relative distance to the others. Two estimators, in the form of a Kalman filter, process the available position information from all the members of the team and produce a pose estimate for every one of them. Simulation results are presented for a typical localization example of three AUVs formation in a large environment and indirect trajectory. The results show that our proposed method offers good localization accuracy, although a small number of low-cost sensors are needed for each vehicle, which validates that it is an economical and practical localization approach.
Abstract-This paper proposes a heuristic method for the sensor selection problem that uses a state vector fusion approach as a data fusion method. We explain the heuristic to estimate a stationary target position. Given a first sensor with specified accuracy and by using genetic algorithm, the heuristic selects second sensor such that the fusion of two sensor measurements would yield an optimal estimation in a target localization scenario. Optimality in our method means that a trade-off between estimation error and cost of sensory system should be created. The heuristic also investigates the importance of proportion between the range and bearing measurement accuracy of selected sensor. Monte Carlo Simulation results for a target position estimation scenario showed that the error in heuristic is less than the estimate error where sensors are used alone for estimation, while considering the trade-off between cost and accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.