Every year, millions of cancer patients undergo radiation therapy for treating and destroying abnormal cell growths within normal cell environmental conditions. Thus, ionizing radiation can have positive therapeutic effects on cancer cells as well as post-detrimental effects on surrounding normal tissues. Previous studies in the past years have proposed that the reduction and oxidation metabolism in cells changes in response to ionizing radiation and has a key role in radiation toxicity to normal tissue. Free radicals generated from ionizing radiation result in upregulation of cyclooxygenases (COXs), nitric oxide synthase (NOSs), lipoxygenases (LOXs) as well as nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase), and their effected changes in mitochondrial functions are markedly noticeable. Each of these enzymes is diversely expressed in multiple cells, tissues and organs in a specific manner. Overproduction of reactive oxygen radicals (ROS), reactive hydroxyl radical (ROH) and reactive nitrogen radicals (RNS) in multiple cellular environments in the affected nucleus, cell membranes, cytosol and mitochondria, and other organelles, can specifically affect the sensitive and modifying enzymes of the redox system and repair proteins that play a pivotal role in both early and late effects of radiation. In recent years, ionizing radiation has been known to affect the redox functions and metabolism of NADPH oxidases (NOXs) as well as having destabilizing and detrimental effects on directly and indirectly affected cells, tissues and organs. More noteworthy, chronic free radical production may continue for years, increasing the risk of carcinogenesis and other oxidative stress-driven degenerative diseases as well as pathologies, in addition to late effect complications of organ fibrosis. Hence, knowledge about the mechanisms of chronic oxidative damage and injury in affected cells, tissues and organs following exposure to ionizing radiation may help in the development of treatment and management strategies of complications associated with radiotherapy (RT) or radiation accident victims. Thus, this medically relevant phenomenon may lead to the discovery of potential antioxidants and inhibitors with promising results in targeting and modulating the ROS/NO-sensitive enzymes in irradiated tissues and organ injury systems.
The early inflammation during the radiation treatment is often a limiting factor in radiotherapy. In addition to the limiting factors, chronic inflammatory responses may increase the risk of second primary cancers through continuous free radical production, attenuation of tumor suppressor genes, and activation of oncogenes. Moreover, these effects may influence non-irradiated tissues through a mechanism named bystander effect.
Radiotherapy has a key role in cancer treatment in more than half of patients with cancer. The management of severe side effects of this treatment modality is a limiting factor to appropriate treatment. Immune system responses play a pivotal role in many of the early and late side effects of radiation. Moreover, immune cells have a significant role in tumor response to radiotherapy, such as angiogenesis and tumor growth. Melatonin as a potent antioxidant has shown appropriate immune regulatory properties that may ameliorate toxicity induced by radiation in various organs. These effects are mediated through various modulatory effects of melatonin in different levels of tissue reaction to ionizing radiation. The effects on the DNA repair system, antioxidant enzymes, immune cells, cytokines secretion, transcription factors, and protein kinases are most important. Moreover, anti-cancer properties of melatonin may increase the therapeutic ratio of radiotherapy. Clinical applications of this agent for the management of malignancies such as breast cancer have shown promising results. It seems anti-proliferative, anti-angiogenesis, and stimulation or suppression of some immune cell responses are the main anti-tumor effects of melatonin that may help to improve response of the tumor to radiotherapy. In this review, the effects of melatonin on the modulation of immune responses in both normal and tumor tissues will be discussed.
Radiotherapy is one of the most relevant treatment options for cancer therapy with or without other treatment modalities including immunotherapy, surgery and chemotherapy. Exposure to heavy doses of ionizing radiation during radiotherapy results in short and long term side effects. It appears that many of these side effects are linked to inflammatory responses during treatment or after prolonged use. Inflammation is mediated by various genes and cytokines related to immune system responses caused by massive cell death following radiotherapy. This phenomenon is more obvious, particularly after exposure to clinical doses of radiotherapy. Inflammation is involved in the amplification of acute responses, genomic instability and also long term pathological changes in normal tissues. Moreover, inflammation attenuates responses of the tumor to radiotherapy through some mechanisms such as angiogenesis. Thus, the management of inflammation is one of the most interesting aims in cancer radiotherapy. Melatonin, known as a natural product in the body, has been of much interest for its anti-inflammatory properties. Some studies have proposed melatonin as a novel anti-inflammation agent. This literature review will concentrate on the anti-inflammatory properties of melatonin that may help the management of different inflammatory signaling pathways in both tumor and normal tissues.
In this review, we describe the role of COX-2 in radiation normal tissue injury as well as irradiated bystander and non-targeted cells. In addition, mechanisms of COX-2 induced tumor resistance to radiotherapy and the potential role of COX-2 inhibition are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.