In this paper, we consider a mean field game model inspired by crowd motion where agents aim to reach a closed set, called target set, in minimal time. Congestion phenomena are modeled through a constraint on the velocity of an agent that depends on the average density of agents around their position. The model is considered in the presence of state constraints: roughly speaking, these constraints may model walls, columns, fences, hedges, or other kinds of obstacles at the boundary of the domain which agents cannot cross. After providing a more detailed description of the model, the paper recalls some previous results on the existence of equilibria for such games and presents the main difficulties that arise due to the presence of state constraints. Our main contribution is to show that equilibria of the game satisfy a system of coupled partial differential equations, known mean field game system, thanks to recent techniques to characterize optimal controls in the presence of state constraints. These techniques not only allow to deal with state constraints but also require very few regularity assumptions on the dynamics of the agents.
In this paper, we consider a first-order deterministic mean field game model inspired by crowd motion in which agents moving in a given domain aim to reach a given target set in minimal time. To model interaction between agents, we assume that the maximal speed of an agent is bounded as a function of their position and the distribution of other agents. Moreover, we assume that the state of each agent is subject to the constraint of remaining inside the domain of movement at all times, a natural constraint to model walls, columns, fences, hedges, or other kinds of physical barriers at the boundary of the domain. After recalling results on the existence of Lagrangian equilibria for these mean field games and the main difficulties in their analysis due to the presence of state constraints, we show how recent techniques allow us to characterize optimal controls and deduce that equilibria of the game satisfy a system of partial differential equations, known as the mean field game system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.