Alkali ion insertion into Prussian blue from aqueous electrolytes is characterized with operando AFM and EQCM, showing coupling of current with deformation and mass change rates. Stable cycling occurs only...
Nanostructured birnessite is of interest as an electrode material for aqueous high power electrochemical energy storage as well as desalination devices. In neutral pH aqueous electrolytes, birnessite exhibits a capacitive response attributed to the adsorption of cations and protons at the outer surface and within the hydrated interlayer. Here, we utilize the understanding of proton‐coupled electron transfer (PCET) in buffered electrolytes to decouple the role of protons and cations in the capacitive charge storage mechanism of birnessite at neutral pH. We find that without buffer, birnessite exhibits primarily potential‐independent (capacitive) behavior with excellent cycling stability. Upon the addition of buffer, the capacity initially increases and the cyclic voltammograms become more potential‐dependent, features attributed to the presence of PCET with the birnessite. However, long‐term cycling in the buffered electrolyte leads to significant capacity fade and dissolution, which is corroborated through ex situ characterization. ReaxFF atomistic scale simulations support the observations that proton adsorption leads to birnessite degradation and that capacitive charge storage in birnessite is primarily attributed to cation adsorption at the outer surface and within the interlayer.
The anion-deficient fluorite-related family of materials exhibits a number of commercially useful properties arising from the specific arrangement of anion vacancies in each structure. One recently reported member, Zn 0.456 In 1.084 Ge 0.46 O 3 , is the only known example with its particular complex structure in which cation coordinations span one 4-coordinate (4b), two 6-coordinate (8e and 16f), and one 8-coordinate (4a) site. A new, complete, solid solution (Cu x Zn 1−x ) 0.456 In 1.084 Ge 0.46 O 3 , (0 ≤ x ≤ 1) has been discovered via the isovalent substitution of Cu 2+ for Zn 2+ , significantly expanding the known phase space of this structure. Synchrotron X-ray data confirm the ZIGO structure over the entire composition range. Inclusion of Cu in the structure is found to occur exclusively at the 16f site, increasing the number of cations mixed on that site from three to four, while all others remain singly occupied, including the other 6-coordinate (8e) position. Furthermore, transmission electron microscopy investigations show no evidence of long-range cation ordering. Thus, disorder on the 16f site appears remarkably favorable in this otherwise highly ordered structure. Nonideal trends in the lattice parameters and diffuse reflectance spectra as a function of Cu content are examined. Further implications of the mixed order and disorder in the solid solution for materials discovery and possible properties of interest are briefly discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.