Background: Data mining as an integral part of the knowledge discovery in database (KDD) has gained significant attention over the past few years. By and large, data mining is the process of finding interesting structures in a considerably voluminous amount of data. Owing to its methods and algorithms supporting variable types of data, the data mining approach has been applied in many scientific areas, including the healthcare industry. Regarding this matter, in this paper, we elaborate on the latest papers, including data miningtechniques and algorithms in the healthcare field of research. Results: We present a data mining review based on the newest researches. Afterward, we categorize data mining papers in healthcare based on supervised and unsupervised learning paradigms as well as classifying them in terms of their applications in the healthcare domain. Conclusions: In every healthcare application, we propose some summary points of the papers. At last, we delve into the absence and hence, the necessity of existing some novel methods in healthcare domains in this researches.
Background and Aim: One of the statistical methods used to analyze the time-to-event medical data is survival analysis. In survival models, the response variable is time to the occurrence of an event. The main characteristic of survival data is the existence of censored data. When we have the distribution of survival time, we can use parametric methods. Among the important and popular distributions that can be used, we can mention the Weibull distribution. If the data derives from a heterogeneous population, simple parametric models (such as Weibull) would not fit the data appropriately. One of the methods which have been introduced to overcome this problem is the use of mixture models. Methods: To assess the validity of the two-component Weibull mixture model, we use a simulation method on heterogeneous survival data. For this purpose, data with different sample sizes were produced in a batch of 1000. Then, the validity of the model is checked using root mean square error (RMSE) criterion Results: It is obtained that increasing the sample size would decrease the RMSE in the parameters. However the maximum observed RMSE in all the parameters was negligible. Conclusion: The Bayesian Weibull mixture model was a proper fit for the heterogeneous survival data
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.