In this paper, a new decision-making algorithm for double lane change maneuver of an articulated vehicle in real dynamic circumstances is studied. A novel method for determining the decision conditions is used based on the articulated vehicle kinematics and dynamics. Through this method, several points of the articulated vehicle are considered in various situations when conducting double lane change maneuver, and the critical points are determined. A new realistic dynamic method is used based on a 16-degrees of freedom dynamic model of the articulated vehicle. The sliding mode control method is utilized to increase the method efficiency. Therefore, the least safe time to perform the double lane change maneuver is extracted based on the sliding mode control method as tracking control. A new Articulated Vehicle Least safe time formulation is determined for dynamic circumstances. Based on the results of simulated test, the acceptable time range is also established for conducting the lane change maneuver. The lane change maneuver is generalized to the double lane change maneuver. Decision-making algorithm is introduced based on real traffic situations. The dynamic approach and the decision-making algorithm are verified. Results show the validity of the reflected method meaning that the decision-making algorithm is acceptable.
The main purpose of this study is to develop a novel motion planning for an articulated vehicle (AV) in real traffic situations. This motion planning generates collision-free and feasible trajectories based on kinematic and dynamic analyses of the AV concerning its surrounding vehicles. For this purpose, the collision-free trajectories are simulated in the presence of other vehicles, when the AV is conducting a lane change manoeuvre. A new method is utilised to derive the feasible trajectories by taking into account 3-D surface of the slip angle, roll angle, and lateral acceleration of the AV. This paper presents a new approach to generate the trajectory of an accelerating AV considering the surrounding vehicles in manoeuvre, which are either accelerating or decelerating. The optimal trajectory is then obtained based on the longitudinal acceleration of the AV and the time duration of the lane change manoeuvre, aimed at trajectory tracking control. Therefore, a 3-DOF dynamic model of the AV, including the yaw-rate, lateral velocity of the tractor and articulation angle, is developed. The tyres dynamic is simulated using non-linear Dug-off model. Furthermore, an innovative trajectory tracking control system is proposed concerning a sliding mode control. The developed dynamic model of the AV is verified by the Truck-Sim model. Results show that the collision-free and feasible trajectories can be generated based on the newly presented method of trajectory planning. The outcomes of the trajectory tracking control as the final part of the motion planning system indicate that the heavy articulated vehicle can be guided according to the new automated motion planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.