Depression is a state of low mood and aversion to activity that can affect a person's thoughts, behavior, feelings and sense of well-being. In such a low mood, both the facial expression and voice appear different from the ones in normal states. In this paper, an automatic system is proposed to predict the scales of Beck Depression Inventory from naturalistic facial expression of the patients with depression. Firstly, features are extracted from corresponding video and audio signals to represent characteristics of facial and vocal expression under depression. Secondly, dynamic features generation method is proposed in the extracted video feature space based on the idea of Motion History Histogram (MHH) for 2-D video motion extraction. Thirdly, Partial Least Squares (PLS) and Linear regression are applied to learn the relationship between the dynamic features and depression scales using training data, and then predict the depression scale for unseen ones. Finally, decision level fusion was done for combining predictions from both video and audio modalities. The proposed approach is evaluated on the AVEC2014 dataset and experimental results demonstrate its effectiveness.
From the last decade, researches on human facial emotion recognition disclosed that computing models built on regression modelling can produce applicable performance. However, many systems need extensive computing power to be run that prevents its wide applications such as robots and smart devices. In this proposed system, a real-time automatic facial expression system was designed, implemented and tested on an embedded device such as FPGA that can be a first step for a specific facial expression recognition chip for a social robot. The system was built and simulated in MATLAB and then was built on FPGA and it can carry out real time continuously emotional state recognition at 30 fps with 47.44% accuracy. The proposed graphic user interface is able to display the participant video and two dimensional predict labels of the emotion in real time together.
Abstract:Recently, real-time facial expression recognition has attracted more and more research. In this study, an automatic facial expression real-time system was built and tested. Firstly, the system and model were designed and tested on a MATLAB environment followed by a MATLAB Simulink environment that is capable of recognizing continuous facial expressions in real-time with a rate of 1 frame per second and that is implemented on a desktop PC. They have been evaluated in a public dataset, and the experimental results were promising. The dataset and labels used in this study were made from videos, which were recorded twice from five participants while watching a video. Secondly, in order to implement in real-time at a faster frame rate, the facial expression recognition system was built on the field-programmable gate array (FPGA). The camera sensor used in this work was a Digilent VmodCAM -stereo camera module. The model was built on the Atlys TM Spartan-6 FPGA development board. It can continuously perform emotional state recognition in real-time at a frame rate of 30. A graphical user interface was designed to display the participant's video in real-time and two-dimensional predict labels of the emotion at the same time.
Abstract-Automatic affective dimension recognition from facial expression continuously in naturalistic contexts is a very challenging research topic but very important in humancomputer interaction. In this paper, an automatic recognition system was proposed to predict the affective dimensions such as Arousal, Valence and Dominance continuously in naturalistic facial expression videos. Firstly, visual and vocal features are extracted from image frames and audio segments in facial expression videos. Secondly, a wavelet transform based digital filtering method is applied to remove the irrelevant noise information in the feature space. Thirdly, Partial Least Squares regression is used to predict the affective dimensions from both video and audio modalities. Finally, two modalities are combined to boost overall performance in the decision fusion process. The proposed method is tested in the fourth international Audio/Visual Emotion Recognition Challenge (AVEC2014) dataset and compared to other state-of-the-art methods in the affect recognition sub-challenge with a good performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.