We present experimental evidence of inhomogeneous distribution
of organic inclusions within individual aragonitic lamellae forming
the nacre layer of mollusk shells. This nanoscale-inhomogeneity is
visualized in the Perna canaliculus (green mussel)
shells by the aid of high-angle annular dark field scanning transmission
electron microscopy (HAADF-STEM) in the tomography mode. Electron
tomography reconstructions of the three-dimensional distribution of
intracrystalline organic inclusions, ranging in size between 2 to
25 nm, clearly reveal 50 nm wide depletion zones adjacent to the organic
sheets between lamellae. The interrelation between the observed fine-scale
inhomogeneity of nacre layer and its improved mechanical properties
is discussed.
The fabrication of integrated quantum dot (QD)-optical microcavity systems is a requisite step for the realization of a wide range of nanophotonic experiments (and applications) that exploit the ability of QDs to emit nonclassical light, e.g., single photons. Thanks to their ∼20-nm positioning accuracy and to their proven potential for single-photon operation, the QDs obtained by spatially selective hydrogen irradiation of dilute-nitride semiconductors-such as Ga(AsN) and Ga(PN)-are uniquely suited for integration with photonic nanodevices. In the present work, we demonstrate the ability to deterministically integrate single, site-controlled Ga(AsN)/Ga(AsN):H QDs within a photonic crystal (PhC) cavity. The properties of the fabricated QD-PhC cavity systems are then probed by photon correlation-providing clear evidence of single-photon emission-and time-resolved microphotoluminescence spectroscopy. Detailed information on the dynamics of our integrated nanodevices can be inferred by comparing these experiments to the solutions of a rate-equations system, developed by taking into account all the main processes leading to the capture, relaxation, and recombination of carriers in and out of the QD. This allows us to follow the evolution of the relevant recombination rates in our system for varying energy detuning, E, between the QD and the PhC cavity. When the QD exciton transition is nearly resonant with the cavity mode, a large (>tenfold) enhancement of the spontaneous emission rate is observed, in substantial agreement with Jaynes-Cummings (JC) theory. For intermediate detunings (E ∼ 1.5-3.5 meV), on the other hand, the observed enhancement is significantly larger than that predicted by JC theory, due to the important role played by acoustic phonons in mediating the QD-PhC cavity coupling in a solid-state environment. Apart from its fundamental interest, the observation of such phonon-mediated, broadband enhancement of light-matter interaction significantly relaxes the requirements for the realization of a large variety of cavity QED-based experiments and applications. These include many photonic devices for which the use of site-controlled Ga(AsN)/Ga(AsN):H QDs would be inherently advantageous, such as those based on the coupling between more than one QD and a single cavity mode (e.g., few-QD nanolasers and QD solids).
In dilute nitride InyGa1−yAs1−xNx alloys, a spatially controlled tuning of the energy gap can be realized by combining the introduction of N atoms—inducing a significant reduction of this parameter—with that of hydrogen atoms, which neutralize the effect of N. In these alloys, hydrogen forms N–H complexes in both Ga‐rich and In‐rich N environments. Here, photoluminescence measurements and thermal annealing treatments show that, surprisingly, N neutralization by H is significantly inhibited when the number of In‐N bonds increases. Density functional theory calculations account for this result and reveal an original, physical phenomenon: only in the In‐rich N environment, the InyGa1−yAs host matrix exerts a selective action on the N–H complexes by hindering the formation of the complexes more effective in the N passivation. This thoroughly overturns the usual perspective of defect‐engineering by proposing a novel paradigm where a major role pertains to the defect‐surrounding matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.