Wild migratory birds are key for ecosystem health but highly sensitive to anthropogenic activities. Therefore, wild migratory birds often undergo rehabilitation to prevent species extinction or biodiversity monitoring.
The worldwide spread of extended spectrum β-lactamase (ESBL)- and AmpC β-lactamase (AmpC)-producing Escherichia coli poses serious threats to public health. Swine farms have been regarded as important reservoirs of ESBL/AmpC-EC. This study aimed to determine the prevalence, ESBL/AmpC types, and clonal distribution of ESBL/AmpC-EC from swine farms and analyze the difference according to the swine production stages. In addition, we evaluated the potential risks of swine ESBL/AmpC-EC clones to humans. Individual fecal samples (n = 292) were collected from weaning, growing, finishing, and pregnant pigs in nine swine farms of South Korea between July 2017 and March 2020. In total, 161 ESBL/AmpC-EC isolates were identified (55.1%), with the highest prevalence detected in the weaning stage (86.3%). The dominant ESBL and AmpC types were CTX-M-55 (69.6%) and CMY-2 (4.3%), respectively. CTX-M found in all production stages, while CMY was only found in growing and finishing stages. In the conjugation assay, the high transferability of CTX-M gene (55.8%) was identified, while the transfer of CMY gene was not identified. The major clonal complexes (CCs) were CC101-B1 (26.8%), CC10-A (8.7%), and CC648-F (2.9%). There was similarity in clonal distribution between different swine production stages within swine farms, estimated using the k-means analysis, which suggested a clonal transmission between the different swine stages. Among swine ESBL/AmpC-EC sequence types (STs), seven STs (ST101, ST10, ST648, ST457, ST410, ST617, and ST744) were common with the human ESBL/AmpC-EC, which registered in National Center for Biotechnology Information database. The clonal population structure analysis based on the virulence factor (VF) presented that swine ESBL/AmpC-EC clones, especially ST101-B1, harbored a highly virulent profile. In conclusion, ESBL/AmpC-EC was distributed throughout the swine production stages, with the highest prevalence in the weaning stage. The CTX-M was present in all stages, while CMY was mostly found in growing-finishing stages. The swine ESBL/AmpC-EC was identified to harbor shared clone types with human ESBL/AmpC-EC and a virulent profile posing potential risk to humans. Considering the possibility of genetic and clonal distribution of ESBL/AmpC-EC among swine production stages, this study suggests the need for strategies considering the production system to control the prevalence of ESBL/AmpC-EC in swine farms.
Global spread of Escherichia coli strains carrying the mobilized colistin resistance gene mcr-1.1 (MCR1-EC) poses serious threats to public health. Colistin has been generally prescribed for swine colibacillosis, having made swine farms as major reservoirs of MCR1-EC. The present study aimed to understand characteristic differences of MCR1-EC, including prevalence, antimicrobial resistance, and virulence, according to swine production stages. In addition, genetic relatedness was evaluated between MCR1-EC isolated from this study as well as pig-, human-, and chicken-derived strains published in the National Center for Biotechnology Information (NCBI), based on the multi-locus sequence types (MLSTs) and whole-genome sequences (WGS). Individual fecal samples (n = 331) were collected from asymptomatic weaning-piglets, growers, finishers, and sows from 10 farrow-to-finishing farms in South Korea between 2017 and 2019. The weighted prevalence of MCR1-EC was 11.6% (95% CI: 8.9%–15.0%, 55/331), with the highest prevalence at weaning stage. The 96.2% of MCR1-EC showed multi-drug resistance. Notably, weaning stage-derived MCR1-EC showed higher resistance rates (e.g., against extended-spectrum β-lactams or quinolones) than those from other stages. MCR1-EC with virulence advantages (e.g., intestinal/extraintestinal pathogenic E. coli or robust biofilm formation) were identified from all pig stages, accounting for nearly half of the total strains. WGS-based in-depth characterization showed that intestinal pathogenic MCR1-EC harbored multi-drug resistance and multiple virulence factors, which were highly shared between strains isolated from pigs of different stages. The clonal distribution of MCR1-EC was shared within swine farms but rarely across farms. The major clonal type of MCR1-EC from swine farms and NCBI database was ST10-A. Core genomes of MCR1-EC isolated from individuals within closed environments (same farms or human hospitals) were highly shared (genetic distance < 0.01), suggesting a high probability of clonal expansion of MCR1-EC within closed environments such as livestock husbandry. To the best of our knowledge, this is the first study to analyze the differences in the characteristics and clonal distribution of MCR1-EC according to production stages in swine farms, an important reservoir of MCR1-EC. Our results highlight the need to establish MCR1-EC control plans in swine farms based on an in-depth understanding of MCR1-EC characteristics according to swine production stages, focusing especially on the weaning stages.
Campylobacter, a major foodborne pathogen, is susceptible to oxygen. Recently, aerotolerant Campylobacter with enhanced tolerance to aerobic stress has become a major concern in food safety. However, the aerotolerance of Campylobacter coli from pigs has not been studied extensively. Here, we sought to investigate the prevalence of C. coli across multiple swine groups in farms, including weaning, growing, and fattening pigs in production stages and pregnant sows. Additionally, we analyzed C. coli aerotolerance, quinolone resistance, virulence potential, and multilocus sequence typing (MLST) genotypes. Finally, we compared the characteristics of C. coli according to the aerotolerance levels. In total, we obtained 124 (66.3%) C. coli isolates from 187 swine fecal samples across six swine farms. The pathogen was prevalent in weaning (45.5%), growing (68.3%), and fattening (75.4%) pigs, and pregnant sows (66.7%). Hyper-aerotolerant HAT C. coli (13.7% of 124 isolates) was present in all swine groups, with the highest proportion in the pregnant sows (27.3%). All HAT isolates possessed diverse virulence-related genes such as flaA, cadF, pldA, ceuE, and cdtA. All C. coli isolates were resistant to quinolones, and 12 (10%) presented high-level ciprofloxacin resistance (MIC ≥ 32 μg/mL). The proportion of C. coli isolates with a high-level ciprofloxacin resistance was the highest in HAT C. coli (18.8%). Furthermore, six MLST sequence types (STs) (ST827, ST830, ST854, ST1016, ST1068, and ST1096) of swine-derived C. coli were in common with human-derived C. coli (PubMLST). The proportion of C. coli belonging to such shared STs at each aerotolerance level was the highest in HAT C. coli (HAT vs. oxygen-sensitive; OR = 3.13). In conclusion, quinolone resistance of C. coli may be distributed throughout in all swine groups in farms. HAT C. coli is likely to remain in pig farms and re-infect other pigs in the farms. Furthermore, swine-derived HAT C. coli could be transmitted to humans easily through the food chain owing to its aerotolerance, and it could pose a threat to public health owing to its high-level ciprofloxacin resistance and virulence. This study highlights the need to develop management practices that prevent the transmission of swine-derived HAT C. coli to humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.