The unabated flurry of research activities to augment various mobile devices by leveraging heterogeneous cloud resources has created a new research domain called Mobile Cloud Computing (MCC). In the core of such a non-uniform environment, facilitating interoperability, portability, and integration among heterogeneous platforms is nontrivial. Building such facilitators in MCC requires investigations to understand heterogeneity and its challenges over the roots. Although there are many research studies in mobile computing and cloud computing, convergence of these two areas grants further academic efforts towards flourishing MCC. In this paper, we define MCC, explain its major challenges, discuss heterogeneity in convergent computing (i.e. mobile computing and cloud computing) and networking (wired and wireless networks), and divide it into two dimensions, namely vertical and horizontal. Heterogeneity roots are analyzed and taxonomized as hardware, platform, feature, API, and network. Multidimensional heterogeneity in MCC results in application and code fragmentation problems that impede development of cross-platform mobile applications which is mathematically described. The impacts of heterogeneity in MCC are investigated, related opportunities and challenges are identified, and predominant heterogeneity handling approaches like virtualization, middleware, and service oriented architecture (SOA) are discussed. We outline open issues that help in identifying new research directions in MCC.
Recently, Cloud-based Mobile Augmentation (CMA) approaches have gained remarkable ground from academia and industry. CMA is the state-of-the-art mobile augmentation model that employs resource-rich clouds to increase, enhance, and optimize computing capabilities of mobile devices aiming at execution of resource-intensive mobile applications. Augmented mobile devices envision to perform extensive computations and to store big data beyond their intrinsic capabilities with least footprint and vulnerability. Researchers utilize varied cloudbased computing resources (e.g., distant clouds and nearby mobile nodes) to meet various computing requirements of mobile users. However, employing cloud-based computing resources is not a straightforward panacea. Comprehending critical factors (e.g., current state of mobile client and remote resources) that impact on augmentation process and optimum selection of cloudbased resource types are some challenges that hinder CMA adaptability. This paper comprehensively surveys the mobile augmentation domain and presents taxonomy of CMA approaches. The objectives of this study is to highlight the effects of remote resources on the quality and reliability of augmentation processes and discuss the challenges and opportunities of employing varied cloud-based resources in augmenting mobile devices. We present augmentation definition, motivation, and taxonomy of augmentation types, including traditional and cloud-based. We critically analyze the state-of-the-art CMA approaches and classify them into four groups of distant fixed, proximate fixed, proximate mobile, and hybrid to present a taxonomy. Vital decision making and performance limitation factors that influence on the adoption of CMA approaches are introduced and an exemplary decision making flowchart for future CMA approaches are presented. Impacts of CMA approaches on mobile computing is discussed and open challenges are presented as the future research directions.
Abstract-The cognitive radio is an emerging technology that enables dynamic spectrum access in wireless networks. The cognitive radio is capable of opportunistically using the available portions of a licensed spectrum to improve the application performance for unlicensed users. The opportunistic use of the available channels in the wireless environment requires dynamic channel assignment to efficiently utilize the available resources while minimizing the interference in the network. A challenging aspect of such algorithms is the incorporation of the channels' diverse characteristics, highly dynamic network conditions with respect to primary users' activity, and different fragmented sizes of the available channels. This paper presents a comprehensive survey on the state-of-the-art channel assignment algorithms in cognitive radio networks. We also classify the algorithms by presenting a thematic taxonomy of the current channel assignment algorithms in cognitive radio networks. Moreover, the critical aspects of the current channel assignment algorithms in cognitive radio networks are analyzed to determine the strengths and weaknesses of such algorithms. The similarities and differences of the algorithms based on the important parameters, such as routing dependencies, channel models, assignment methods, execution model, and optimization objectives, are also investigated. We also discuss open research issues and challenges of channel assignment in the cognitive radio networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.