The presence of tensile residual stress in cracked structures combined with external loading leads to circumstances where a structure may fail at a lower applied load than when residual stresses are not present. This is taken into consideration in the fracture assessment codes which are usually invoked to determine whether a cracked structure is fit-for-purpose. These codes typically attempt to decompose the stresses present in the structure under consideration into either “secondary” or “primary” components, in order to simplify the assessment and avoid the need for detailed numerical modeling. It is acknowledged that whether a given residual stress field should be classified as “secondary” or as “primary” is dependent on the level of associated elastic follow-up (EFU). However, although there is a significant body of work related to the influence of EFU on the high temperature creep behavior of uncracked structures, the EFU concept has not yet been rigorously applied to the fracture assessment of cracked structures. This paper represents a first step towards a more rigorous application of the EFU concept to the fracture assessment of cracked structures containing residual stresses. Insight is provided into the influence of residual stress and EFU on fracture by considering the behavior of a simple three-bar assembly. Having introduced the concept, a three-bar type test rig capable of generating fit-up residual stresses with varying levels of EFU in a compact-tension fracture-specimen is presented. Results, produced using this test rig, from two cases with identical levels of initial residual stress but different levels of associated EFU are considered. It is concluded that EFU is important in determining how the residual force in the specimen changes (and therefore how the component of crack driving force associated with the residual force changes) as damage accumulates in the specimen subsequent to fracture initiation.
This document is the author's post-print version, incorporating any revisions agreed during the peer-review process. Some differences between the published version and this version may remain and you are advised to consult the published version if you wish to cite from it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.