An experimental design was used to optimize plasmid purification from an alkaline lysate of Escherichia coli cells using PEG-sodium citrate aqueous two-phase systems (ATPS), and to evaluate the influence of pH, PEG molecular weight, tie line length, phase volume ratio, and lysate load. To build the mathematical model and minimize the number of experiments for the design parameters, response surface methodology (RMS) with an orthogonal rotatable central composite design was defined based on the conditions found for the highest purification by preliminary tests. The adequacy of the calculated models for the plasmid recovery and remaining RNA were confirmed by means of variance analysis and additional experiments. Analysis of contours of constant response as a function of pH, PEG molecular weight, tie line length, and cell lysate load for three different phase volume ratios revealed different effects of these five factors on the studied parameters. Plasmid recovery of 99% was predicted for a system with PEG 400, pH 6.9, tie line length of 38.7%, phase volume ratio of 1.5, and lysate load of 10% (v/v). Under these conditions the predicted RNA removal was 68%.
With continual rapid developments in the biomedical field and understanding of the important mechanisms and pharmacokinetics of biological molecules, controlled drug delivery systems (CDDSs) have been at the forefront over conventional drug delivery systems. Over the past several years, scientists have placed boundless energy and time into exploiting a wide variety of excipients, particularly diverse polymers, both natural and synthetic. More recently, the development of nano polymer blends has achieved noteworthy attention due to their amazing properties, such as biocompatibility, biodegradability and more importantly, their pivotal role in controlled and sustained drug release in vitro and in vivo. These compounds come with a number of effective benefits for improving problems of targeted or controlled drug and gene delivery systems; thus, they have been extensively used in medical and pharmaceutical applications. Additionally, they are quite attractive for wound dressings, textiles, tissue engineering, and biomedical prostheses. In this sense, some important and workable natural polymers (namely, chitosan (CS), starch and cellulose) and some applicable synthetic ones (such as poly-lactic-co-glycolic acid (PLGA), poly(lactic acid) (PLA) and poly-glycolic acid (PGA)) have played an indispensable role over the last two decades for their therapeutic effects owing to their appealing and renewable biological properties. According to our data, this is the first review article highlighting CDDSs composed of diverse natural and synthetic nano biopolymers, blended for biological purposes, mostly over the past five years; other reviews have just briefly mentioned the use of such blended polymers. We, additionally, try to make comparisons between various nano blending systems in terms of improved sustained and controlled drug release behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.