This paper investigates the determinants of nonperforming loans (NPL), with a special focus on house price fluctuations. Using a panel of U.S. banks, the analysis is carried out across different loan categories and different types of banks. It is found that house price fluctuations significantly affect the dynamics of NPL, while the magnitude of the impact varies across loan categories and bank types.
This study analyses credit default risk for firms in the Asian and Pacific region by applying two methodologies: a Support Vector Machine (SVM) and a logistic regression (Logit). Among different financial ratios suggested as predictors of default, leverage ratios and the company size display a higher discriminating power compared to others. An analysis of the dependencies between PD and financial ratios is provided along with a comparison with Europe (Germany). With respect to forecasting accuracy the SVM has a lower model risk than the Logit on average and displays a more robust performance. This result holds true across different years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.