Previous studies evaluating Vitamin B12 (VB12) with Ti(III)-citrate for potential use in in situ remediation of perfluorooctanesulfonate (PFOS) found that linear (L)-PFOS was unaltered. We explored if alternate reductants could overcome this limitation with a primary focus on nanoscale zerovalent zinc (nZn). Transformation over time with VB12-nZn was quantified at 22, 70, and 90 °C for PFOS, at 70 °C for perfluorohexanesulfonate (PFHxS), and VB12-nFe and VB12-Pd/nFe at 70 °C for PFOS. Only branched (br-) isomers were transformed generating F (no SO) and polyfluoroalkyl intermediates/products. The absence of L-PFOS transformation by VB12 appears to be due to the inability of L-perfluoroalkyl sulfonates to complex with VB12 and not an activation energy issue that can be overcome by stronger reductants/catalysts. At 90 °C, 95% of br-PFOS isomers were transformed within 5 days. Isomer-specific removal rates were positively correlated to the br-CF's proximity to the terminal CF. Br-PFHxS transformation was approximately two times slower with less defluorination than br-PFOS. C8/C7 and C6/C5 polyfluorinated sulfonates from br-PFOS and br-PFHxS, respectively, were identified as both intermediates and apparent dead-end products. Pathways included 4 F replaced by 2 H and a C═C bond, and serial F replacement by H with up to 12 F atoms removed from br-PFOS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.