Caenorhabditis elegans is an instrumental research model used to advance our knowledge in areas including development, metabolism, and aging. However, research on metabolism and/or other measures of health/aging are confounded by the nematode’s food source in the lab, live E. coli bacteria. Commonly used treatments, including ultraviolet irradiation and antibiotics, are successful in preventing bacterial replication, but the bacteria can remain metabolically active. The purpose of this study is to develop a metabolically inactive food source for the worms that will allow us to minimize the confounding effects of bacterial metabolism on worm metabolism and aging. Our strategy is to use a paraformaldehyde (PFA) treated E. coli food source and to determine its effects on worm health, metabolism and longevity. We initially determine the lowest possible concentrations of PFA necessary to rapidly and reproducibly kill bacteria. We then measure various aspects of worm behavior, healthspan and longevity, including growth rate, food attraction, brood size, lifespan and metabolic assessments, such as oxygen consumption and metabolomics. Our resulting data show that worms eat and grow well on these bacteria and support the use of 0.5% PFA-killed bacteria as a nematode food source for metabolic, drug, and longevity experiments.
An organism’s ability to perceive and respond to changes in its environment is crucial for its health and survival. Here we reveal how the most well-studied longevity intervention, dietary restriction, acts in-part through a cell non-autonomous signaling pathway that is inhibited by the presence of attractive smells. Using an intestinal reporter for a key gene induced by dietary restriction but suppressed by attractive smells, we identify three compounds that block food odor effects in C. elegans, thereby increasing longevity as dietary restriction mimetics. These compounds clearly implicate serotonin and dopamine in limiting lifespan in response to food odor. We further identify a chemosensory neuron that likely perceives food odor, an enteric neuron that signals through the serotonin receptor 5-HT1A/SER-4, and a dopaminergic neuron that signals through the dopamine receptor DRD2/DOP-3. Aspects of this pathway are conserved in D. melanogaster. Thus, blocking food odor signaling through antagonism of serotonin or dopamine receptors is a plausible approach to mimic the benefits of dietary restriction.
Flavin containing monooxygenases (FMOs) are promiscuous enzymes known for metabolizing a wide range of exogenous compounds. In C. elegans, fmo-2 expression increases lifespan and healthspan downstream of multiple longevity-promoting pathways through an unknown mechanism. Here, we report that, beyond its classification as a xenobiotic enzyme, fmo-2 expression leads to rewiring of endogenous metabolism principally through changes in one carbon metabolism (OCM). These changes are likely relevant, as we find that genetically modifying OCM enzyme expression leads to alterations in longevity that interact with fmo-2 expression. Using computer modeling, we identify decreased methylation as the major OCM flux modified by FMO-2 that is sufficient to recapitulate its longevity benefits. We further find that tryptophan is decreased in multiple mammalian FMO overexpression models and is a validated substrate for FMO-2. Our resulting model connects a single enzyme to two previously unconnected key metabolic pathways and provides a framework for the metabolic interconnectivity of longevity-promoting pathways such as dietary restriction. FMOs are well-conserved enzymes that are also induced by lifespan-extending interventions in mice, supporting a conserved and important role in promoting health and longevity through metabolic remodeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.