Summary In response to many apoptotic stimuli, oligomerization of Bax is essential for mitochondrial outer membrane permeabilization and the ensuing release of cytochrome c. These events are accompanied by mitochondrial fission that appears to require Drp1, a large GTPase of the dynamin superfamily. Loss of Drp1 leads to decreased cytochrome c release by a mechanism that is poorly understood. Here we show that Drp1 stimulates tBid-induced Bax oligomerization and cytochrome c release by promoting tethering and hemifusion of membranes in vitro. This function of Drp1 is independent of its GTPase activity and relies on arginine 247 and the presence of cardiolipin in membranes. In cells, overexpression of Drp1 R247A/E delays Bax oligomerization and cell death. Our findings reveal a novel function of Drp1 and provide a new insight into the mechanism of Bax oligomerization.
Activation of Bax or Bak is essential for the completion of many apoptotic programmes. Under cytotoxic conditions, these proteins undergo a series of conformational rearrangements that end up with their oligomerization. We found that unlike inactive monomeric Bax, active oligomerized Bax is partially resistant to trypsin digestion, providing a convenient read out to monitor Bax activation. Using this assay, we studied how the lipid composition of membranes affects tBid-induced Bax activation in vitro with pure liposomes. We report that Bax activation is inhibited by cholesterol and by decreases in membrane fluidity. This observation was further tested in vivo using the drug U18666A, which we found increases mitochondrial cholesterol levels. When incubated with tBid, mitochondria isolated from U18666A-treated cells showed a delay in the release of Smac/Diablo and Cytochrome c, as well as in Bax oligomerization. Moreover, pre-incubation with U18666A partially protected cells from stressinduced apoptosis. As many tumours display high mitochondrial cholesterol content, inefficient Bax oligomerization might contribute to their resistance to apoptosis-inducing agents. Among the stimuli that lead to apoptosis, a series of stress conditions trigger the permeabilization of the mitochondrial outer membrane (MOM) and the release of pro-apoptotic factors that will activate caspases in the cytosol. This so-called intrinsic apoptotic pathway is tightly regulated by proteins of the Bcl-2 family, among which the pro-apoptotic members Bax and Bak are essential. They seem to be the central players whose activation results in MOM permeabilization.Under resting conditions, whereas Bak essentially resides in the MOMs, Bax is found in loose association with membranes (mainly the MOMs) or as a soluble protein in the cytosol. Following many cytotoxic signals, Bax and Bak undergo a series of conformational rearrangements. 1 Bax translocates to mitochondria and inserts into the MOMs in a form that cannot be detached by alkali treatment. Bax and Bak then uncover N-terminal epitopes and oligomerize. Oligomerization, shown by size exclusion chromatography, 2 crosslinking experiments 3,4 and native gel electrophoresis, 5 appears as the critical step resulting in MOM permeabilization. However, despite many efforts, it remains unclear how each of these conformational rearrangements is regulated, and how Bax/Bak oligomerization leads to the release of mitochondrial apoptogenic factors. Both processes are undoubtedly regulated by other members of the Bcl-2 family, 6,7 but the participation of many unrelated proteins was also proposed. 8 While a BH3-only protein appears to be sufficient for Bax to oligomerize in synthetic liposomes, 9,10 additional proteins could be required for its activation in isolated mitochondria. 11 These might directly interact with Bax, and/or modify the membrane properties to allow its oligomerization. Interaction with mitochondrial lipids is indeed an important parameter to consider as the final conformational rearrange...
Under many apoptotic conditions, Bax undergoes conformational rearrangements, leading to its insertion in the mitochondrial outer membrane as a transmembrane oligomer. At the same time, mitochondria undergo fragmentation and activated Bax was reported to localize to fission sites. We studied how lipid composition and membrane curvature regulate Bax activation. When isolated mitochondria were incubated with phospholipase A 2 , which led to phosphatidylethanolamine and cardiolipin hydrolysis, tBid and Bax insertion were hindered. We thus studied in liposomes how phosphatidylethanolamine, cardiolipin, and its hydrolysis products affect Bax activation. Whereas phosphatidylethanolamine, a lipid with negative curvature, did not affect Bax insertion, it inhibited Bax oligomerization. Conversely, Bax insertion required cardiolipin, and was not blocked by cardiolipin hydrolysis products. These experiments support a direct role for cardiolipin in the recruitment and activation of Bax. To examine if the increase in membrane curvature that accompanies mitochondrial fission participates in Bax activation, we studied how liposome size affects the process, and observed that it was inhibited in small liposomes (p200 nm diameter). Therefore, the localization of Bax to mitochondrial scission sites does not result from a preference for curved bilayers. Our experiments show that membrane properties can control the process of Bax activation, providing an additional level to the mechanisms of regulation of mitochondrial permeability.
In many apoptotic responses, pro-apoptotic members of the Bcl-2 family trigger the permeabilization of the outer mitochondrial membrane, thereby allowing the release of mitochondrial apoptogenic factors that contribute to caspase activation in the cytosol. The mechanisms that lead to the activation of pro-apoptotic Bcl-2 family members and to the permeabilization of the outer mitochondrial membrane are not yet completely understood. Here, we attempt to summarize our current view of the mechanisms that lead to these events, regarding both additional proteins that were recently suggested to be involved, and the roles of lipids.
Under stress conditions, apoptogenic factors normally sequestered in the mitochondrial intermembrane space are released into the cytosol, caspases are activated and cells die by apoptosis. Although the precise mechanism that leads to the permeabilization of mitochondria is still unclear, the activation of multidomain pro-apoptotic proteins of the Bcl-2 family, such as Bax and Bak, is evidently crucial. Regulation of Bax and Bak by other members of the family has been known for a long time, but recent evidence suggests that additional unrelated proteins participate in the process, both as inhibitors and activators. The important rearrangements mitochondrial lipids undergo during apoptosis play a role in the permeabilization process and this role is probably more central than first envisioned.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.