In this paper, a probabilistic roadmap planner algorithm with the multi robot path planning problem have been proposed by using the A* search algorithm in a dynamic environment. The whole process consists of two phases. In the first phase: Preprocessing phase, the work space is converted into the configuration space, constructing a probabilistic roadmap graph in the free space, and finding the optimal path for each robot using a global planner that avoids the collision with the static obstacles. The second phase: Moving phase, moves each robot in a prioritized manner from its starting point to its ending point through a near optimal path with avoiding collision with the moving obstacles and the other robots. A comparison has been done with the depth first algorithm to see the difference. The simulation results shows that choosing A* search algorithm affect positively the speed of the two phases together in comparison to the depth first search algorithm. General TermsArtificial intelligence, Robot path planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.