Abstract. In this paper we study the behaviour at infinity of the Fourier transform of Radon measures supported by the images of fractal sets under an algorithmically random Brownian motion. We show that, under some computability conditions on these sets, the Fourier transform of the associated measures have, relative to the Hausdorff dimensions of these sets, optimal asymptotic decay at infinity. The argument relies heavily on a direct characterisation, due to Asarin and Pokrovskii, of algorithmically random Brownian motion in terms of the prefix-free Kolmogorov complexity of finite binary sequences. The study also necessitates a closer look at the potential theory over fractals from a computable point of view.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.