Energy consumption in the residential sector is 25% of all the sectors. The advent of smart appliances and intelligent sensors have increased the realization of home energy management systems. Acquiring balance between energy consumption and user comfort is in the spotlight when the performance of the smart home is evaluated. Appliances of heating, ventilation and air conditioning constitute up to 64% of energy consumption in residential buildings. A number of research works have shown that fuzzy logic system integrated with other techniques is used with the main objective of energy consumption minimization. However, user comfort is often sacrificed in these techniques. In this paper, we have proposed a Fuzzy Inference System (FIS) that uses humidity as an additional input parameter in order to maintain the thermostat set-points according to user comfort. Additionally, we have used indoor room temperature variation as a feedback to proposed FIS in order to get the better energy consumption. As the number of rules increase, the task of defining them in FIS becomes time consuming and eventually increases the chance of manual errors. We have also proposed the automatic rule base generation using the combinatorial method. The proposed techniques are evaluated using Mamdani FIS and Sugeno FIS. The proposed method provides a flexible and energy efficient decision-making system that maintains the user thermal comfort with the help of intelligent sensors. The proposed FIS system requires less memory and low processing power along with the use of sensors, making it possible to be used in the IoT operating system e.g., RIOT. Simulation results validate that the proposed technique reduces energy consumption by 28%.
The problem of extracting maximum power from a photovoltaic (PV) system with negligible power loss is concerned with the power generating capability of the PV array and nature of the output load. Changing weather conditions and nonlinear behavior of PV systems pose a challenge in tracking of varying maximum power point. A robust nonlinear controller is required to ensure maximum power point tracking (MPPT) by handling nonlinearities of a system and making it robust against changing environmental conditions. Sliding mode controller is robust against disturbances, model uncertainties and parametric variations. It depicts undesirable phenomenon like chattering, inherent in it causing power and heat losses. In this paper, a supertwisting sliding mode algorithm based nonlinear robust controller has been designed for MPPT of a PV system which not only removes the chattering but also enhances the overall system’s dynamic response. Moreover, supertwisting sliding mode controller is robust against changing environmental conditions like change in temperature and irradiance. Noninverting DC-DC Buck-Boost converter has been used as an interface between source and the load. The efficiency of MPPT of a PV system depends upon the accuracy of reference for peak power voltage, therefore an efficient mechanism for reference generation has also been proposed in this work. The reference for peak power voltage has been generated by using a trained artificial neural network, which is to be tracked by proposed nonlinear controllers. Sliding mode controller (SMC) and synergetic controllers have also been designed for MPPT of a PV system in order to compare them with supertwisting sliding mode controller (ST-SMC). Global asymptotic stability of the system has been ensured by using Lyapunov stability criterion. The performance of the proposed nonlinear controllers has been validated in MATLAB/Simulink ODE 45 environment. ST-SMC has also been compared with recently proposed integral backstepping controller and other conventional MPPT controllers given in the literature. The simulation results show the better performance of ST-SMC in terms of best dynamic response and robustness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.