In this study, sodium montmorillonite (Na-MMT) was successfully modified by using n-hexadecyl trimethyl ammonium bromide (CTAB) via cationic exchange to obtain an organophilicmontmorillonite (CTAB-MMT). The Na-MMT, CTAB-MMT, and a commercial montmorillonite, that is, Cloisite15A were incorporated into gellan gum (GG) hydrogel and their mechanical, physical, thermal properties, biocompatibility, and antibacterial activities were investigated. The mechanical performance results show that the GG hydrogels containing Cloisite15A required smallest volume to achieve optimum compression stress, modulus, and compression strain at 5% (w/w) compared to both Na-MMT and CTAB-MMT at 10% (w/w). Swelling ratio of GG hydrogels increased upon addition of MMT, and water vapor transmission rate (WVTR) values of all hydrogels were in the range of 1106-1890 g m −2 d −1 , which were comparable to WVTR values of commercial wound dressings. Thermal behavior shows that the inclusion of Cloisite15A in GG hydrogel improved the thermal stability than its counterparts. Cell studies exhibit that the GG incorporated with Na-MMT is non-cytotoxic to human skin fibroblast cells (CRL2522), and in contrast, the GG hydrogels incorporated CTAB-MMT and Cloisite15A revealed that the cells were dying and the cell growth depleted after being cultured for 72 h. Qualitative antibacterial study revealed that GG hydrogel containing CTAB-MMT only in the sample exhibits inhibition against the Gram-positive bacteria, that is, Staphylococcus aureus and Bacillus cereus, while there was no inhibition exhibited against Gram-negative bacteria (Escherichia coli and Klebsiella pneumoniae).
The uniformly cross-linked gellan gum hydrogel with sodium montmorillonite (Na-MMT), organo-montmorillonite (CTAB-MMT) and Cloisite 15A were successfully prepared. The compression performances of the hydrogels were investigated. The results show that the GG hydrogels containing Cloisite 15A required smallest volume to achieve optimum compression stress, modulus and compression strain at 5% (w/w) compared to both Na-MMT and CTAB-MMT at 10% (w/w), respectively. The decrease in compression performances of gellan gum hydrogel at higher concentration containing those clays could be due to agglomeration process which created the entangled structure and bring up the brittleness of hydrogel properties. Overall, the presence of the clays significantly improved the mechanical performances of gellan gum hydrogels which beneficial to be used in tissue engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.