Robin’s criterion says that the Riemann Hypothesis is equivalent to \[\forall n\geq 5041, \ \ \frac{\sigma(n)}{n}\leq e^{\gamma}\log_2 n,\] where \sigma(n) is the sum of the divisors of n, \gamma represents the Euler–Mascheroni constant, and \log_i denotes the i-fold iterated logarithm. In this note we get the following better effective estimates: \begin{equation*} \forall n\geq3, \ \frac{\sigma(n)}{n}\leq e^{\gamma}\log_2 n+\frac{0.3741}{\log_2^2n}. \end{equation*} The idea employed will lead us to a possible new reformulation of the Riemann Hypothesis in terms of arithmetic functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.