The structure and interactions of oxygenated aromatic molecules are of atmospheric interest due to their toxicity and as precursors of aerosols. Here, we present the analysis of 4-methyl-2-nitrophenol (4MNP) using chirped pulse and Fabry–Pérot Fourier transform microwave spectroscopy in combination with quantum chemical calculations. The rotational, centrifugal distortion, and 14N nuclear quadrupole coupling constants of the lowest-energy conformer of 4MNP were determined as well as the barrier to methyl internal rotation. The latter has a value of 106.4456(8) cm−1, significantly larger than those from related molecules with only one hydroxyl or nitro substituent in the same para or meta positions, respectively, as 4MNP. Our results serve as a basis to understand the interactions of 4MNP with atmospheric molecules and the influence of the electronic environment on methyl internal rotation barrier heights.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.