The aim of this work was to investigate the adsorptive performance of the polypyrrole-based KOH-activated carbon (PACK) in the removal of the basic dye crystal violet (CV) using a batch adsorption system. The equilibrium data, obtained at different initial CV concentrations (
C
0
=
50
–
500
mg
/
L
) and temperatures (25–45°C), were interpreted using the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherms, with the Langmuir model providing a better fit (
R
2
≥
0.9997
) and a maximum adsorption capacity of 497.51 mg/g at 45°C. Under the examined conditions, the values of the thermodynamic parameters free energy, enthalpy, and entropy indicate a spontaneous, endothermic, and physisorption adsorption process. The kinetic data of the adsorption process were very well described by a pseudo-second-order model (
R
2
≥
0.9996
). However, surface diffusion seems to be the main rate-controlling step. Thus, we concluded that PACK shows commercial potential for the removal of cationic dyes such as CV from industrial effluent.
The green synthesis of zinc sulfide nanoparticles (ZnS NPs)-mediated plant extract is gaining importance because of its simplicity, cost-effectiveness, and ecofriendly nature. In this work, ZnS NPs were synthesized using garlic extract as NPs facilitating agent, characterized by Fourier transform infrared, X-ray diffraction, scanning electron microscope, and UV–visible, then their antibacterial and hemocompatibility were assayed. Analysis revealed a cubic phase, 2.33 nm crystallite size, and a 3.75 eV optical bandgap. Bioactivity test against Staphylococcus aureus and Escherichia coli indicated dose-dependent potency closer to that of azithromycin standard drug and more efficient on S. aureus (Gram-positive) than E. coli (Gram-negative) bacteria. Biocompatibility test in terms of erythrocyte hemolysis, in reference to normal saline and water as minimal and maximal controls, confirmed nontoxic substance up to 100 μg/mL as the highest examined concentration and at which a lysis of 2.9% was detected. Therefore, it could be concluded that this biogenic method is effective in producing ZnS NPs with desirable properties for potential biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.