The tumor-specific targeting of chemotherapeutic agents for specific necrosis of cancer cells without affecting the normal cells poses a great challenge for researchers and scientists. Though extensive research has been carried out to investigate chemotherapy-based targeted drug delivery, the identification of the most promising strategy capable of bypassing non-specific cytotoxicity is still a major concern. Recent advancements in the arena of onco-targeted therapies have enabled safe and effective tumor-specific localization through stimuli-responsive drug delivery systems. Owing to their promising characteristic features, stimuli-responsive drug delivery platforms have revolutionized the chemotherapy-based treatments with added benefits of enhanced bioavailability and selective cytotoxicity of cancer cells compared to the conventional modalities. The insensitivity of stimuli-responsive drug delivery platforms when exposed to normal cells prevents the release of cytotoxic drugs into the normal cells and therefore alleviates the off-target events associated with chemotherapy. Contrastingly, they showed amplified sensitivity and triggered release of chemotherapeutic payload when internalized into the tumor microenvironment causing maximum cytotoxic responses and the induction of cancer cell necrosis. This review focuses on the physical stimuli-responsive drug delivery systems and chemical stimuli-responsive drug delivery systems for triggered cancer chemotherapy through active and/or passive targeting. Moreover, the review also provided a brief insight into the molecular dynamic simulations associated with stimuli-based tumor targeting.
Poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) are commonly used for drug delivery because of their favored biocompatibility and suitability for sustained and controlled drug release. To prolong NP circulation time, enable target-specific drug delivery and overcome physiological barriers, NPs camouflaged in cell membranes have been developed and evaluated to improve drug delivery. Here, we discuss recent advances in cell membrane-coated PLGA NPs, their preparation methods, and their application to cancer therapy, management of inflammation, treatment of cardiovascular disease and control of infection. We address the current challenges and highlight future research directions needed for effective use of cell membranecamouflaged NPs.
Background: Lipid-polymer hybrid nanoparticles (LPHNP) are suitable for co-delivery of hydrophilic and lipophilic drugs. The structural advantages of polymers and biomimetic properties of lipids enable higher encapsulation of drugs and controlled release profile. Lipidpolymer hybrid nanoparticles have been prepared for co-delivery of curcumin and cisplatin for enhanced cytotoxicity against ovarian cancer. Material and Methods: Chitosan, cisplatin, curcumin, Lipoid S75 were selected as structural components and ionic gelation method was used for preparation of LPHNPs. Nanoparticles were formed via ionic interaction of positively charged chitosan and negatively charged lipid. Results: The optimized nanoparticles were of 225 nm with cationic charge. The encapsulation efficiency was greater than 80% with good drug loading. The drug release profile showed controlled release behavior of both curcumin and cisplatin simultaneously and the absence of burst release. The in vitro therapeutic efficacy and cellular association was evaluated using A2780 ovarian cell lines. To further investigate therapeutic efficacy, we developed 3D spheroids as tumor model to mimic the in vivo conditions. The cytotoxicity and uptake of co-loaded LPHNPs were evaluated on 3D spheroids and results indicated increased chemosensitization and enhanced therapeutic efficacy of co-loaded LPHNPs. Conclusion: Lipid-polymer hybrid nanoparticles could be a suitable platform for co-delivery of curcumin and cisplatin for enhanced cytotoxic effect on ovarian cell lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.