Early-stage diagnosis of pancreatic ductal adenocarcinoma (PDAC) is difficult due to non-specific symptoms. Circulating miRNAs in body fluids have been emerging as potential non-invasive biomarkers for diagnosis of many cancers. Thus, this study aimed to assess a panel of miRNAs for their ability to differentiate PDAC from chronic pancreatitis (CP), a benign inflammatory condition of the pancreas. Next-generation sequencing was performed to identify miRNAs present in 60 FFPE tissue samples (27 PDAC, 23 CP and 10 normal pancreatic tissues). Four up-regulated miRNAs (miR-215-5p, miR-122-5p, miR-192-5p, and miR-181a-2-3p) and four down-regulated miRNAs (miR-30b-5p, miR-216b-5p, miR-320b, and miR-214-5p) in PDAC compared to CP were selected based on next-generation sequencing results. The levels of these 8 differentially expressed miRNAs were measured by qRT-PCR in 125 serum samples (50 PDAC, 50 CP, and 25 healthy controls (HC)). The results showed significant upregulation of miR-215-5p, miR-122-5p, and miR-192-5p in PDAC serum samples. In contrast, levels of miR-30b-5p and miR-320b were significantly lower in PDAC as compared to CP and HC. ROC analysis showed that these 5 miRNAs can distinguish PDAC from both CP and HC. Hence, this panel can serve as a non-invasive biomarker for the early detection of PDAC.
Background:
The association of primary brain tumors with Single Nucleotide polymorphisms (SNPs) in genes of folate metabolising enzymes have been reported to vary among different ethnic population. Here, we have studied the association of SNPs of folate metabolizing genes with the primary brain tumors (glioma and meningioma) in North Indian population.
Methods:
SNPs of genes coding for folate metabolizing enzymes was carried out in 288 study population from North India [Glioma (n=108), Meningioma (n=76) and healthy-control (n=104)]. The allele-specific polymerase chain reaction (ARMS-PCR) was used to analyse the SNP A1298C of the MTHFR (Methylenetetrahydrofolate-reductase) and the SNP A66G of the methionine synthase reductase (MTRR) genes. The PCR-RLFP (Restriction Fragment Length Polymorphism) was used to analyse the SNP C677T of the Methylene tetrahydrofolate-reductase and the SNP A2756G of the methionine-synthase (MTR) genes. Serum homocysteine, vitamin B
12
and folate levels were evaluated in controls/patients serum using Chemiluminescence immunoassay and the levels were correlated with SNPs genotype.
Results:
The CC genotype of MTHFR A1298C was observed to have reduced risk of having meningioma than AA genotype (odd ratio=0.62, 95%CI 0.32-0.97, p=0.03). Similarly, the AG genotype of MTRR A66G showed reduced risk of glioma than AA genotype (odd ratio=0.56, 95%CI 0.32-0.97, p=0.039). Furthermore, in patients with AA genotype of MTR A2756G and CT genotype of MTHFR C677T showed higher serum homocysteine level than GG genotype (8.6 µmol/L, p=0.048) and CC genotype (11.2µmol/L, p=0.039) respectively.
Conclusion:
Our findings provide an insight into the risk association of SNPs in MTHFR A1298C and MTRR A66G genes with glioma/meningioma patients. Further studies are needed to evaluate their clinical implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.